Skip to main content Accessibility help

On the Suitability of SIFT Technique to Deal with Image Modifications Specific to Confocal Scanning Laser Microscopy

  • Stefan G. Stanciu (a1), Radu Hristu (a1), Radu Boriga (a2) and George A. Stanciu (a1)


Computer vision tasks such as recognition and classification of objects and structures or image registration and retrieval can provide significant information when applied to microscopy images. Recently developed techniques for the detection and description of local features make the extraction and description of local image features that are invariant to various changes possible. The invariance and robustness of feature detection and description techniques play a key role in the design and implementation of object recognition, image registration, or image mosaicing applications. The scale-invariant feature transform (SIFT) technique is a widely used method for the detection, description, and matching of image features. In this article we present the results of our experiments regarding the repeatability of SIFT features, and to the precision of the SIFT feature matching, under image modifications specific to confocal scanning laser microscopy (CSLM). We have analyzed the behavior of SIFT while changing the pinhole aperture, photomultiplier gain, laser beam power, and electronic zoom. Our experiments, conducted on CSLM images, show that the SIFT technique is able to match detected key points between images acquired at different values of the acquisition parameters with good precision and represents a consistent tool for computer vision applications in CSLM.


Corresponding author

Corresponding author. E-mail:


Hide All
Bay, H., Ess, A., Tuytelaars, T. & Gool, L.V. (2008). SURF: Speeded up robust features. Comput Vis Image Und 110(3), 346359.
Bay, H., Fasel, B. & Gool, L.V. (2006). Interactive museum guide: Fast and robust recognition of museum objects. Proceedings of the First International Workshop on Mobile Vision.
Brown, M. & Lowe, D. (2007). Automatic panoramic image stitching using invariant features. Int J Comp Vision 74(1), 5973.
Burghouts, G. & Geusebroek, J. (2009). Performance evaluation of local colour invariants. Comput Vision Image Und 113(1), 4862.
Cheng, P.C. & Kriete, A. (1995). Image contrast in confocal light microscopy. In Handbook of Biological Confocal Microscopy, Pawley, J. (Ed.), pp. 327347. New York: Plenum Press.
Fan, X. & Xi, S. (2007). Feature-based automatic stitching of microscopic images. Advanced Intelligent Computing Theories and Applications. With Aspects of Contemporary Intelligent Computing Techniques, 2. Berlin, Heidelberg: Springer.
Kaynig, V., Fischer, B., Wepf, R. & Buhmann, J.M. (2007). Fully automatic registration of electron microscopy images with high and low resolution. Microsc Microanal 13(S2), 198199.
Ke, Y. & Sukthankar, R. (2004). PCA-SIFT: A more distinctive representation for local image descriptors. Proc. CVPR, 2, pp. 506513. Los Alamitos, CA: IEEE Computer Society.
Kondra, S., Laishram, J., Ban, J., Migliorini, E., Difoggia, V., Lazzarino, M., Torre, V. & Ruaro, M. (2009). Integration of confocal and atomic force microscopy images. J Neurosci Methods 177(1), 94107.
Li, Y., Yang, J., Wu, R. & Gong, F. (2006). Efficient object tracking based on local invariant features. Proceedings of the International Symposium on Communications and Information Technologies (ISCIT '06), pp. 697700. Los Alamitos, CA: IEEE Press.
Lowe, D.G. (1999). Object recognition from local scale-invariant features. Proceedings of the IEEE International Conference on Computer Vision, 2, pp. 11501157. Washington, DC: IEEE Computer Society.
Lowe, D.G. (2004). Distinctive image features from scale-invariant keypoints. Int J Comput Vision 60(2), 91110.
Lu, Y. & Shaham, S. (2008). Automated 3D reconstruction of serial electron microscopy image sequences using object recognition. Microsc Microanal 14(S2), 812CD813CD.
Ma, B., Zimmermann, T., Rohde, M., Winkelbach, S., He, F., Lindenmaier, W. & Dittmar, K. (2007). Use of autostitch for automatic stitching of microscope images. Micron 38, 492499.
Mikolajczyk, K. & Schmid, C. (2004). Scale and affine invariant interest point detectors. Int J Comput Vision 1(60), 6386.
Mikolajczyk, K. & Schmid, C. (2005). A performance evaluation of local descriptors. IEEE T Pattern Anal 10(27), 16151630.
Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T. & Van Gool, L. (2005). A comparison of affine region detectors. Int J Comput Vision 65(1–2), 4372.
Pechaud, M., Vanzetta, I., Deneux, T. & Keriven, R. (2008). SIFT-based sequence registration and flow-based cortical vessel segmentation applied to high resolution optical imaging data. Proceedings of the 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Paris, May 14–17, 2008, pp. 720723. New York: IEEE.
Rothganger, F., Lazebnik, S., Schmid, C. & Ponce, J. (2006). 3D object modelling and recognition using local affine-invariant image descriptors and multi-view spatial constraints. Int J Comput Vision 66, 231259.
Stanciu, S.G., Hristu, R., Boriga, R. & Stanciu, G. (2009). Feature based recognition of photonic devices in images obtained by confocal scanning laser microscopy. 11th International Conference on Transparent Optical Networks (ICTON '09). Piscataway, NJ: IEEE.
Tang, C., Dong, Y. & Su, X. (2008). Automatic registration based on improved SIFT for medical microscopic sequence images. Proceedings of the 2008 Second International Symposium on Intelligent Information Technology, pp. 580583. Washington, DC: IEEE Computer Society.
Terasaki, M. & Dailey, M.E. (1995). Confocal microscopy of living cells. In Handbook of Biological Confocal Microscopy, Pawley, J. (Ed.), pp. 327347. New York: Plenum Press.
Thevenaz, P. & Unser, M. (2007). User-friendly semiautomated assembly of accurate image mosaics in microscopy. Microsc Res Tech 70, 135146.
Vercauteren, T. (2008). Image registration and mosaicing for dynamic in vivo fibered confocal microscopy. PhD Thesis, École National Supérieure des Mines de Paris.
Zhou, H., Yuan, Y. & Shi, C. (2009). Object tracking using SIFT features and mean shift. Comput Vis Image Und 113(3), 345352.
Zitova, B. (2003). Image registration methods: A survey. Image Vision Comput 21(11), 9771000.


On the Suitability of SIFT Technique to Deal with Image Modifications Specific to Confocal Scanning Laser Microscopy

  • Stefan G. Stanciu (a1), Radu Hristu (a1), Radu Boriga (a2) and George A. Stanciu (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed