Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T09:54:01.102Z Has data issue: false hasContentIssue false

New Approaches to the Microscopic Imaging of Trypanosoma brucei

Published online by Cambridge University Press:  01 October 2004

Mark C. Field
Affiliation:
Wellcome Trust Laboratories for Molecular Parasitology, Department of Biological Sciences, Imperial College, Exhibition Road, London SW7 2AY, UK
Clare L. Allen
Affiliation:
Wellcome Trust Laboratories for Molecular Parasitology, Department of Biological Sciences, Imperial College, Exhibition Road, London SW7 2AY, UK
Vivek Dhir
Affiliation:
Wellcome Trust Laboratories for Molecular Parasitology, Department of Biological Sciences, Imperial College, Exhibition Road, London SW7 2AY, UK
David Goulding
Affiliation:
Wellcome Trust Laboratories for Molecular Parasitology, Department of Biological Sciences, Imperial College, Exhibition Road, London SW7 2AY, UK
Belinda S. Hall
Affiliation:
Wellcome Trust Laboratories for Molecular Parasitology, Department of Biological Sciences, Imperial College, Exhibition Road, London SW7 2AY, UK
Gareth W. Morgan
Affiliation:
Wellcome Trust Laboratories for Molecular Parasitology, Department of Biological Sciences, Imperial College, Exhibition Road, London SW7 2AY, UK
Paul Veazey
Affiliation:
Wellcome Trust Laboratories for Molecular Parasitology, Department of Biological Sciences, Imperial College, Exhibition Road, London SW7 2AY, UK
Markus Engstler
Affiliation:
Ludwig-Maximilians-Universitaet, Department Biologie I, Genetik, Maria-Ward-Str. 1a, 80638 Muenchen, Germany
Get access

Abstract

Protozoan parasites are fearsome pathogens responsible for a substantial proportion of human mortality, morbidity, and economic hardship. The principal disease agents are members of the orders Apicomplexa (Plasmodium, Toxoplasma, Eimeria) and Kinetoplastida (Trypanosomes, Leishmania). The majority of humans are at risk from infection from one or more of these organisms, with profound effects on the economy, social structure and quality of life in endemic areas; Plasmodium itself accounts for over one million deaths per annum, and an estimated 4 × 107 disability-adjusted life years (DALYs), whereas the Kinetoplastida are responsible for over 100,000 deaths per annum and 4 × 106 DALYs. Current control strategies are failing due to drug resistance and inadequate implementation of existing public health strategies. Trypanosoma brucei, the African Trypanosome, has emerged as a favored model system for the study of basic cell biology in Kinetoplastida, because of several recent technical advances (transfection, inducible expression systems, and RNA interference), and these advantages, together with genome sequencing efforts are widely anticipated to provide new strategies of therapeutic intervention. Here we describe a suite of methods that have been developed for the microscopic analysis of T. brucei at the light and ultrastructural levels, an essential component of analysis of gene function and hence identification of therapeutic targets.

Type
Feature Articles
Copyright
© 2004 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agabian, N. (1990). Trans-splicing of nuclear pre-mRNAs. Cell 61, 11571160.Google Scholar
Ali, B.R., Pal, A., Croft, S.L., Taylor, R.J., & Field, M.C. (1999). The farnesyltransferase inhibitor manumycin A is a novel trypanocide with a complex mode of action including major effects on mitochondria. Mol Biochem Parasitol 104, 6780.Google Scholar
Allen, C.L., Goulding, D., & Field, M.C. (2003). Clathrin-mediated endocytosis is essential in Trypanosoma brucei. EMBO J 22, 49915002.Google Scholar
Armstrong, J.A., Brown, K.N., & Valentine, R.C. (1964). The ingestion of protein molecules by blood forms of Trypanosoma rhodesiense. Trans Roy Soc Trop Med Hyg 58, 291.Google Scholar
Balber, A.E. & Frommel, T.O. (1988). Trypanosoma brucei gambiense and T. b. rhodesiense: Concanavalin A binding to the membrane and flagellar pocket of bloodstream and procyclic forms. J Protozool 35, 214219.Google Scholar
Bangs, J.D. (1998). Surface coats and secretory trafficking in African trypanosomes. Curr Opin Microbiol 1, 448454.Google Scholar
Bangs, J.D., Brouch, E.M., Ransom, D.M., & Roggy, J.L. (1996). A soluble secretory reporter system in Trypanosoma brucei. Studies on endoplasmic reticulum targeting. J Biol Chem 271, 1838718393.Google Scholar
Beverley, S.M. (2003). Protozomics: Trypanosomatid parasite genetics comes of age. Nat Rev Genet 4, 1119.Google Scholar
Brickman, M.J. & Balber, A.E. (1990). Trypanosoma brucei rhodesiense bloodstream forms: Surface ricin-binding glycoproteins are localized exclusively in the flagellar pocket and the flagellar adhesion zone. J Protozool 37, 219224.Google Scholar
Brickman, M.J., Cook, J.M., & Balber, A.E. (1995). Low temperature reversibly inhibits transport from tubular endosomes to a perinuclear, acidic compartment in African trypanosomes. J Cell Sci 108, 36113621.Google Scholar
Bruce, D. (1911). The morphology of Trypanosoma evansi (Steel). Proc Roy Soc B 84, 181.Google Scholar
Bruce, D. (1915). The Croonian lectures on trypanosomes. Lancet June 26, 13231330.Google Scholar
Cross, G.A.M. (1996). Antigenic variation in trypanosomes: Secrets surface slowly. Bioessays 18, 283291.Google Scholar
Denny, P.W., Gokool, S., Russell, D.G., Field, M.C., & Smith, D.F. (2000). Acylation-dependent protein export in Leishmania. J Biol Chem 275, 1101711025.Google Scholar
Docampo, R. & Moreno, S.N. (1999). Acidocalcisome: A novel Ca2+ storage compartment in trypanosomatids and apicomplexan parasites. Parasitol Today 15, 443448.Google Scholar
Docampo, R., Scott, D.S., Vercesi, A.E., & Moreno, S.N.J. (1995). Intracellular Ca2+ storage in acidocalcisomes of Trypanosoma cruzi. Biochem J 310, 10051012.Google Scholar
Engstler, M. & Boshart, M. (2004). Genes & Development (in press).
Engstler, M., Thilo, L., Weise, F., Grünfelder, C.G., Schwarz, H., Boshart, M., & Overath, P. (2004). Kinetics of endocytosis and recycling of the GPI-anchored variant surface glycoprotein in Trypanosoma brucei. J Cell Sci 117, 11051115.Google Scholar
Engstler, M., Weise, F., Bopp, K., Gruenfelder, C.G., & Overath, P. (2004). Molec Microbiol (in press).
Ferguson, M.A.J. (1999). The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research. J Cell Sci 112, 27992809.Google Scholar
Field, H., Ali, B.R., Sherwin, T., Gull, K., Croft, S.L., & Field, M.C. (1999). TbRab2p, a marker for the endoplasmic reticulum of Trypanosoma brucei, localises to the ERGIC in mammalian cells. J Cell Sci 112, 147156.Google Scholar
Field, H., Farjah, M., Pal, A., Gull, K., & Field, M.C. (1998). Complexity of trypanosomatid endocytosis pathways revealed by Rab4 and Rab5 isoforms in Trypanosoma brucei. J Biol Chem 273, 3210232110.Google Scholar
Field, H., Sherwin, T., Smith, A.C., Gull, K., & Field, M.C. (2000). Cell-cycle and developmental regulation of TbRAB31 localisation, a GTP-locked Rab protein from Trypanosoma brucei. Mol Biochem Parasitol 106, 2135.Google Scholar
Gull, K. (1999). The cytoskeleton of trypanosomatid parasites. Annu Rev Microbiol 53, 629655.Google Scholar
Grünfelder, C.G., Engstler, M., Weise, F., Schwarz, H., Stierhof, Y.D., Boshart, M., & Overath, P. (2002). Accumulation of a GPI-anchored protein at the cell surface requires sorting at multiple intracellular levels. Traffic 3, 547559.Google Scholar
Grünfelder, C.G., Engstler, M., Weise, F., Schwarz, H., Stierhof, Y.D., Morgan, G.W., Field, M.C., & Overath, P. (2003). Endocytosis of a GPI-anchored protein via clathrin-coated vesicles, sorting by default in endosomes and exocytosis via TbRAB11-positive carriers. Mol Biol Cell 14, 20292040.Google Scholar
Hoare, C.E. (1972). The trypanosomes of mammals; a zoological monograph. Oxford: Blackwell Scientific Publications.
Jeffries, T.R., Morgan, G.W., & Field, M.C. (2001). A developmentally regulated rab11 homologue in Trypanosoma brucei is involved in recycling processes. J Cell Sci 114, 26172626.Google Scholar
Jeffries, T.R., Morgan, G.W., & Field, M.C. (2002). TbRAB18, a developmentally regulated Golgi GTPase from Trypanosoma brucei. Mol Biochem Parasitol 121, 6374.Google Scholar
Kable, M., Heidmann, S., & Stuart, K. (1997). RNA editing: Getting the U into RNA. Trends Biochem Sci 22, 162166.Google Scholar
Kelley, R.J., Alexander, D.L., Cowan, C., Balber, A.E., & Bangs, J.D. (1999). Molecular cloning of p67, a lysosomal membrane glycoprotein from Trypanosoma brucei. Mol Biochem Parasitol 98, 1728.Google Scholar
Legros, D., Ollivier, G., Gastellu-Etchegorry, M., Paquet, C., Burri, C., Jannin, J., & Buscher, P. (2002). Treatment of human African trypanosomiasis—Present situation and needs for research and development. Lancet Infect Dis 2, 437440.Google Scholar
Lorenz, P., Maier, A.G., Baumgart, E., Erdmann, R., & Clayton, C. (1998). Elongation and clustering of glycosomes in Trypanosoma brucei overexpressing the glycosomal Pex11p. EMBO J 17, 35423555.Google Scholar
Lukes, J., Guilbride, D.L., Votypka, J., Zikova, A., Benne, R., & Englund, P.T. (2002). Kinetoplast DNA network: Evolution of an improbable structure. Eukaryot Cell 1, 495502.Google Scholar
Magez, S., Geuskens, M., Beschin, A., del Favero, H., Verschueren, H., Lucas, R., Pays, E., & de Baetselier, P. (1997). Specific uptake of tumor necrosis factor-alpha is involved in growth control of Trypanosoma brucei. J Cell Biol 137, 715727.Google Scholar
Marchesini, N., Ruiz, F.A., Vieira, M., & Docampo, R. (2002). Acidocalcisomes are functionally linked to the contractile vacuole of Dictyostelium discoideum. J Biol Chem 277, 81468153.Google Scholar
McConville, M.J. & Ferguson, M.A. (1993). The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem J 294, 305324.Google Scholar
Minchin, E.A. (1909). The structure of Trypanosoma lewisi in relation to microscopical technique. Q J Micr Sci 53, 755.Google Scholar
Morgan, G.W., Hall, B.S., Denny, P.W., Carrington, M., & Field, M.C. (2002a). The kinetoplastida endocytic apparatus. Part I: A dynamic system for nutrition and evasion of host defences. Trends Parasitol 18, 491496.Google Scholar
Morgan, G.W., Hall, B.S., Denny, P.W., Field, M.C., & Carrington, M. (2002b). The endocytic apparatus of the kinetoplastida. Part II: Machinery and components of the system. Trends Parasitol 18, 540546.Google Scholar
Mußmann, R., Jansen, H., Calafat, J., Engstler, M., Ansorge, I., Clayton, C., & Borst, P. (2003). The expression level determines the surface distribution of the transferrin receptor in Trypanosoma brucei. Mol Microbiol 47, 123.Google Scholar
Nolan, D.P., Geuskens, M., & Pays, E. (1999). N-linked glycans containing linear poly-N-acetyllactosamine as sorting signals in endocytosis in Trypanosoma brucei. Curr Biol 9, 11691172.Google Scholar
Nolan, D.P., Jackson, D.G., Biggs, M.J., Brabazon, E.D., Pays, A., Van Laethem, F., Paturiaux-Hanocq, F., Elliot, J.F., Voorheis, H.P., & Pays, E. (2000). Characterization of a novel alanine-rich protein located in surface microdomains in Trypanosoma brucei. J Biol Chem 275, 40724080.Google Scholar
Ogbadoyi, E., Ersfeld, K., Robinson, D., Sherwin, T., & Gull, K. (2000). Architecture of the Trypanosoma brucei nucleus during interphase and mitosis. Chromosoma 108, 501513.Google Scholar
Opperdoes, F.R. & Michels, P.A.M. (1993). The glycosomes of the kinetoplastida. Biochimie 75, 231234.Google Scholar
Overath, P. & Engstler, M. (2004). Endocytosis, membrane recycling and sorting of GPI-anchored proteins: Trypanosoma brucei as a model system. Mol Microbiol 53, 735744.Google Scholar
Pal, A., Hall, B.S., Nesbeth, D.N., Field, H.I., & Field, M.C. (2002). Differential endocytic functions of Trypanosoma brucei Rab5 isoforms reveal a glycosylphosphatidylinositol-specific endosomal pathway. J Biol Chem 277, 95299539.Google Scholar
Patnaik, P.K., Field, M.C., Menon, A.K., Cross, G.A., Yee, M.C., & Butikofer, P. (1993). Molecular species analysis of phospholipids from Trypanosoma brucei bloodstream and procyclic forms. Mol Biochem Parasitol 58, 97105.Google Scholar
Remme, J.H., Blas, E., Chitsulo, L., Desjeux, P.M., Engers, H.D., Kanyok, T.P., Kayondo, J.F., Kioy, D.W., Kumaraswami, V., Lazdins, J.K., Nunn, P.P., Oduola, A., Ridley, R.G., Toure, Y.T., Zicker, F., & Morel, C.M. (2002). Strategic emphases for tropical diseases research: A TDR perspective. Trends Microbiol 10, 435440.Google Scholar
Robinson, D.R. & Gull, K. (1991). Basal body movements as a mechanism for mitochondrial genome segregation in the trypanosome cell cycle. Nature 352, 731733.Google Scholar
Robinson, D.R., Sherwin, T., Ploubidou, A., Byard, E.H., & Gull, K. (1995). Microtubule polarity and dynamics in the control of organelle positioning, segregation, and cytokinesis in the trypanosome cell cycle. J Cell Biol 128, 11631172.Google Scholar
Rout, M.P. & Field, M.C. (2001). Isolation and characterization of subnuclear compartments from Trypanosoma brucei. Identification of a major repetitive nuclear lamina component. J Biol Chem 276, 3826138271.Google Scholar
Slot, J.W., Geuze, H.J., Gigengack, S., Lienhard, G.E., & James, D.E. (1991). Immunolocalisation of the insulin regulatory glucose transporter in brown adipose tissue of the rat. J Cell Biol 113, 123135.Google Scholar
Tokuyasu, K.T. (1986). Application of cryoultramicrotomy to immunocytochemistry. J Microsc 143, 139149.Google Scholar
Tyler, K.M., Matthews, K.R., & Gull, K. (2001). Anisomorphic cell division by African trypanosomes. Protist 152, 367378.Google Scholar
Vassella, E., Bütikofer, P., Engstler, M., Jelk, J., & Roditi, I. (2003). Procyclin null mutants of Trypanosoma brucei express free GPIs on their cell surface. Mol Biol Cell 14, 13081318.Google Scholar
Vassella, E., Straesser, K., & Boshart, M. (1997). A mitochondrion-specific dye for multicolour fluorescent imaging of Trypanosoma brucei. Mol Biochem Parasitol 90, 381385.Google Scholar
Vickerman, K. (1969a). On the surface coat and flagellar adhesion in trypanosomes. J Cell Sci 5, 163193.Google Scholar
Vickerman, K. (1969b). The fine structure of Trypanosoma congolense in its bloodstream phase. J Protozool 16, 5469.Google Scholar
Vickerman, K. (1970). Functional aspects of the cytology of trypanosomes. Trans Roy Soc Trop Med Hyg 64, 180181.Google Scholar
Wang, Z., Drew, M.E., Morris, J.C., & Englund, P.T. (2002). Asymmetrical division of the kinetoplast DNA network of the trypanosome. EMBO J 21, 49985005.Google Scholar
Woodward, R., Carden, M.J., & Gull, K. (1995). Immunological characterization of cytoskeletal proteins associated with the basal body, axoneme and flagellum attachment zone of Trypanosoma brucei. Parasitology 111, 7785.Google Scholar