Skip to main content Accessibility help

Nanolithography on Graphene by Using Scanning Tunneling Microscopy in a Methanol Environment

  • Chulsu Kim (a1), Joonkyu Park (a1), Yongho Seo (a1), Jinho Ahn (a2) and In-Sung Park (a2)...


Since it was discovered in 2004, graphene has attracted enormous attention as an emerging material for future devices, but it has been found that conventional lithographic processes based on polymer resist degrade its intrinsic performance. Recently, our group studied a resist-free scanning tunneling microscopy-based lithography in various atmospheres by injecting volatile liquids into a chamber. In this study, multilayer graphene was scanned and etched by controlling bias voltage under methanol pressure. We focused on improving patterning results in terms of depth and line width, while the previous study was performed to find an optimum gas environment for patterning on a graphite surface. Specifically, we report patterning outputs depending on conditions of voltage, current, and pressure. The optimum conditions for methanol environment etching were a gas pressure in the range of 41–50 torr, a −4 V tip bias, and a 2 nA tunneling current.


Corresponding author

* Corresponding author. E-mail:
** Corresponding author. E-mail:


Hide All
Avouris, P., Chen, Z. & Perebeinos, V. (2007). Carbon-based electronics. Nat Nanotechnol 2(10), 605615.
Biro, L.P., Nemes-Incze, P. & Lambin, P. (2012). Graphene: Nanoscale processing and recent applications. Nanoscale 4(6), 18241839.
Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P. & Stormer, H.L. (2008). Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9-10), 351355.
Byun, I.-S., Yoon, D., Choi, J.S., Hwang, I., Lee, D.H., Lee, M.J., Kawai, T., Son, Y.-W., Jia, Q., Cheong, H. & Park, B.H. (2011). Nanoscale lithography on monolayer graphene using hydrogenation and oxidation. ACS Nano 5(8), 64176424.
Chen, Z., Lin, Y.-M., Rooks, M.J. & Avouris, P. (2007). Graphene nano-ribbon electronics. Phys E Low Dimens Syst Nanostruct 40(2), 228232.
Dean, C.R., Young, A.F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Taniguchi, T., Kim, P., Shepard, K.L. & Hone, J. (2010). Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol 5(10), 722726.
Decker, R., Wang, Y., Brar, V.W., Regan, W., Tsai, H.Z., Wu, Q., Gannett, W., Zettl, A. & Crommie, M.F. (2011). Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy. Nano Lett 11(6), 22912295.
Dobrik, G., Tapasztó, L., Nemes-Incze, P., Lambin, P. & Biró, L.P. (2010). Crystallographically oriented high resolution lithography of graphene nanoribbons by STM lithography. Phys Status Solidi B 247(4), 896902.
Geim, A.K. & Novoselov, K.S. (2007). The rise of graphene. Nat Mater 6(3), 183191.
Goossens, A.M., Calado, V.E., Barreiro, A., Watanabe, K., Taniguchi, T. & Vandersypen, L.M.K. (2012). Mechanical cleaning of graphene. Appl Phys Lett 100(7), 073110-1–3.
Han, M.Y., Özyilmaz, B., Zhang, Y. & Kim, P. (2007). Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 98(20), 206805.
Hiura, H. (2004). Tailoring graphite layers by scanning tunneling microscopy. Appl Surf Sci 222(1-4), 374381.
Kim, K., Hwang, D., Kim, J. & Seo, Y. (2008). Compact coarse approach mechanism for a scanning probe microscope. J Korean Phys Soc 52(2), 209211.
Kim, K., Park, J., Kim, C., Choi, W., Seo, Y., Ahn, J. & Park, I.-S. (2012). Removing graphite flakes for preparing mechanically exfoliated graphene sample. Micro Nano Lett 7(11), 11331135.
Kondo, S., Lutwyche, M. & Wada, Y. (1994). Nanofabrication of layered materials with the scanning tunneling microscope. Appl Surf Sci 75(1-4), 3944.
Kurra, N., Prakash, G., Basavaraja, S., Fisher, T.S., Kulkarni, G.U. & Reifenberger, R.G. (2011). Charge storage in mesoscopic graphitic islands fabricated using AFM bias lithography. Nanotechnology 22(24), 245302-1–9.
Liang, X., Jung, Y.-S., Wu, S., Ismach, A., Olynick, D.L., Cabrini, S. & Bokor, J. (2010). Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography. Nano Lett 10(7), 24542460.
Lin, Y.C., Lu, C.C., Yeh, C.H., Jin, C.H., Suenaga, K. & Chiu, P.W. (2012). Graphene annealing: How clean can it be? Nano Lett 12(1), 414419.
Liu, G.-Y., Xu, S. & Qian, Y. (2000). Nanofabrication of self-assembled monolayers using scanning probe lithography. Acc Chem Res 33(7), 457466.
Masubuchi, S., Ono, M., Yoshida, K., Hirakawa, K. & Machida, T. (2009). Fabrication of graphene nanoribbon by local anodic oxidation lithography using atomic force microscope. Appl Phys Lett 94(8), 082107.
Moser, J., Barreiro, A. & Bachtold, A. (2007). Current-induced cleaning of graphene. Appl Phys Lett 91(16), 163513.
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V. & Firsov, A.A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065), 197200.
Park, J., Kim, K.B., Park, J.Y., Choi, T. & Seo, Y. (2011). Graphite patterning in a controlled gas environment. Nanotechnology 22(33), 335304-1–7.
Pumera, M. (2011). Graphene-based nanomaterials for energy storage. Energy Environ Sci 4(3), 668674.
Ross, C.B., Sun, L. & Crooks, R.M. (1993). Scanning probe lithography. 1. Scanning tunneling microscope induced lithography of self-assembled n-alkanethiol monolayer resists. Langmuir 9(3), 632636.
Schrader, M.E. (1980). Ultrahigh-vacuum techniques in the measurement of contact angles. 5. Leed study of the effect of structure on the wettability of graphite. J Phys Chem 84(21), 27742779.
Seo, Y., Cadden-Zimansky, P. & Chandrasekhar, V. (2007). Low-temperature scanning force microscopy using a tuning fork transducer. J Korean Phys Soc 50(2), 378383.
Tapaszto, L., Dobrik, G., Lambin, P. & Biro, L.P. (2008). Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat Nano 3(7), 397401.
Wang, W.L., Bell, D.C. & Kaxiras, E. (2009). High resolution sculpting and imaging for graphene nano-structures. Microsc Microanal 15, 11661167.
Weng, L., Zhang, L., Chen, Y.P. & Rokhinson, L.P. (2008). Atomic force microscope local oxidation nanolithography of graphene. Appl Phys Lett 93(9), 093107.
Yong, H., Kim, K., Choi, W., Park, J., Ahmad, M. & Seo, Y. (2012). The production of a cellular graphene array by scanning probe lithography and its ability to store electrical charge. Carbon 50(12), 46404647.


Nanolithography on Graphene by Using Scanning Tunneling Microscopy in a Methanol Environment

  • Chulsu Kim (a1), Joonkyu Park (a1), Yongho Seo (a1), Jinho Ahn (a2) and In-Sung Park (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed