Skip to main content Accessibility help

Monolithic Chip System with a Microfluidic Channel for In Situ Electron Microscopy of Liquids

  • Eric Jensen (a1) (a2) (a3), Andrew Burrows (a2) and Kristian Mølhave (a1)


Electron microscopy of enclosed liquid samples requires the thinnest possible membranes as enclosing windows as well as nanoscale liquid sample thickness to achieve the best possible resolution. Today liquid sample systems for transmission electron microscopy (TEM) are typically made from two sandwiched microchips with thin membranes. We report on a new microfabricated chip system based on a monolithic design that enables membrane geometry on the scale of a few micrometers. The design is intended to reduce membrane deflection when the system is under pressure, a microfluidic channel for improved flow geometry, and a better space angle for auxiliary detectors such as energy-dispersive X-ray spectroscopy. We explain the system design and fabrication and show the first successful TEM images of liquid samples in the chips.


Corresponding author

* Corresponding author.


Hide All
Creemer, J.F., Helveg, S., Hoveling, G.H., Ullmann, S., Molenbroek, A.M., Sarro, P.M. & Zandbergen, H.W. (2008). Atomic-scale electron microscopy at ambient pressure. Ultramicroscopy 108, 993998.
De Jonge, N. & Ross, F.M. (2011). Electron microscopy of specimens in liquid. Nat Nanotechnol 6, 695704.
Evans, J.E., Jungjohann, K.L., Browning, N.D. & Arslan, I. (2011). Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett 11, 28092813.
Gai, P.L., Sharma, R. & Ross, F.M. (2008). Environmental (S)TEM studies of gas-liquid-solid interactions under reaction conditions. MRS Bull 33, 107114.
Grogan, J.M., Rotkina, L. & Bau, H.H. (2011). In situ liquid-cell electron microscopy of colloid aggregation and growth dynamics. Phys Rev E 83, 061405–1–5.
Holtz, M.E., Yu, Y., Abruña, H.D. & Muller, D.A. (2012). In-situ electron energy loss spectroscopy of liquids. Microsc Microanal 18, 10941095.
Huang, T.-W., Liu, S.-Y., Chuang, Y.-J., Hsieh, H.-Y., Tsai, C.-Y., Huang, Y.-T., Mirsaidov, U., Matsudaira, P., Tseng, F.-G., Chang, C.-S. & Chen, F.-R. (2012). Self-aligned wet-cell for hydrated microbiology observation in TEM. Lab Chip 12, 340347.
Jungjohann, K.L., Bliznakov, S., Sutter, P.W., Stach, E.A. & Sutter, E.A. (2013). In situ liquid cell electron microscopy of the solution growth of Au–Pd core–shell nanostructures. Nano Lett 13, 29642970.
Kisielowski, C., Freitag, B., Bischoff, M., van Lin, H., Lazar, S., Knippels, G., Tiemeijer, P., van der Stam, M., von Harrach, S., Stekelenburg, M., Haider, M., Uhlemann, S., Müller, H., Hartel, P., Kabius, B., Miller, D., Petrov, I., Olson, E.A., Donchev, T., Kenik, E.A, Lupini, A.R., Bentley, J., Pennycook, S.J., Anderson, I.M., Minor, A.M., Schmid, A.K., Duden, T., Radmilovic, V., Ramasse, Q.M., Watanabe, M., Erni, R., Stach, E.A., Denes, P. & Dahmen, U. (2008). Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscope with 0.5-Å information limit. Microsc Microanal 14, 469477.
Klein, K.L., Anderson, I.M. & de Jonge, N. (2011). Transmission electron microscopy with a liquid flow cell. J Microsc 242, 117123.
Li, D., Nielsen, M.H., Lee, J.R.I., Frandsen, C., Banfield, J.F. & De Yoreo, J.J. (2012 a). Direction-specific interactions control crystal growth by oriented attachment. Science 336, 10141018.
Li, D., Nielsen, M.H., Lee, J.R.I., Frandsen, C., Banfield, J.F. & De Yoreo, J.J. (2012 b). Direction-specific interactions control crystal growth by oriented attachment. Science 336, 10141018.
Liao, H.-G., Cui, L., Whitelam, S. & Zheng, H. (2012). Real-time imaging of Pt3Fe nanorod growth in solution. Science 336, 10111014.
Liu, K.-L., Wu, C.-C., Huang, Y.-J., Peng, H.-L., Chang, H.-Y., Chang, P., Hsu, L. & Yew, T.-R. (2008). Novel microchip for in situ TEM imaging of living organisms and bio-reactions in aqueous conditions. Lab Chip 8, 19151921.
McFarland, A.D., Haynes, C.L., Mirkin, C.A., Van Duyne, R.P. & Godwin, H.A. (2004). Color my nanoworld. J Chem Educ 81, 544A544B.
Mueller, C., Harb, M., Dwyer, J.R. & Miller, R.J.D. (2013). Nanofluidic cells with controlled pathlength and liquid flow for rapid, high-resolution in situ imaging with electrons. J Phys Chem Lett 4, 23392347.
Peckys, D.B. & de Jonge, N. (2011). Visualizing gold nanoparticle uptake in live cells with liquid scanning transmission electron microscopy. Nano Lett 11, 17331738.
Peckys, D.B., Veith, G.M., Joy, D.C. & de Jonge, N. (2009). Nanoscale imaging of whole cells using a liquid enclosure and a scanning transmission electron microscope. PLoS ONE 4, e8214.
Ring, E.A. & de Jonge, N. (2010). Microfluidic system for transmission electron microscopy. Microsc Microanal 16, 622629.
Schomburg, W.K. (2011). Membranes. In Introduction to Microsystem Design. Springer.
Tao, F.F. & Salmeron, M. (2011). In situ studies of chemistry and structure of materials in reactive environments. Science 331, 171174.
White, E.R., Mecklenburg, M., Singer, S.B., Aloni, S. & Regan, B.C. (2011). Imaging nanobubbles in water with scanning transmission electron microscopy. Appl Phys Express 4, 055201.
Williamson, M.J., Tromp, R.M., Vereecken, P.M., Hull, R. & Ross, F.M. (2003). Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat Mater 2, 532536.
Yang, J. & Paul, O. (2002). Fracture properties of LPCVD silicon nitride thin films from the load-deflection of long membranes. Sensors Actuators Phys 97–98, 520526.
Yarin, A.L., Yazicioglu, A.G., Megaridis, C.M., Rossi, M.P. & Gogotsi, Y. (2005). Theoretical and experimental investigation of aqueous liquids contained in carbon nanotubes. J Appl Phys 97, 124309.
Yuk, J.M., Park, J., Ercius, P., Kim, K., Hellebusch, D.J., Crommie, M.F., Lee, J.Y., Zettl, A. & Alivisatos, A.P. (2012). High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336, 6164.
Zheng, H., Smith, R.K., Jun, Y., Kisielowski, C., Dahmen, U. & Alivisatos, A.P. (2009). Observation of single colloidal platinum nanocrystal growth trajectories. Science 324, 13091312.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed