Skip to main content Accessibility help
×
Home

Microstructure Characterization of ZK60 Magnesium Alloys Using TEM and HR-EBSD

  • Jae-Hyung Cho (a1), Soo-Hyun Kim (a2), Sang-Ho Han (a1) and Suk-Bong Kang (a1)

Abstract

ZK60 (Mg–Zn–Zr) alloys exhibited a variation in precipitates with aging, and their mechanical properties also changed. Microindentation tests were carried out on two types of ZK60 alloys of solid solution (T4) and peak aging (T6). Microstructure and texture evolution during indentation was investigated using electron backscatter diffraction. Twinning occurred near the indentation marks in most grains. It was found that tensile twinning was dominant, and two twin variants were usually observed. Texture and microstructure evolution by twinning and slip activation was further examined by uniaxial compression test with strain. The initial random orientation gradually changed into basal fibers with strain. Some grains with nonbasal orientations aligned with the loading direction easily underwent twinning followed by slip deformation. Other grains near basal orientations revealed only slip deformation.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Microstructure Characterization of ZK60 Magnesium Alloys Using TEM and HR-EBSD
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Microstructure Characterization of ZK60 Magnesium Alloys Using TEM and HR-EBSD
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Microstructure Characterization of ZK60 Magnesium Alloys Using TEM and HR-EBSD
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author. E-mail: jhcho@kims.re.kr

References

Hide All
Agnew, S.R. & Duygulu, O. (2005). Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B. Int J Plast 21, 11611193.
Agnew, S.R., Yoo, M.H. & Tome, C.N. (2001). Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li and Y. Acta Mater 49, 42774289.
Chen, H., Kang, S.B., Yua, H., Cho, J.H., Kim, H.W. & Mina, G. (2009). Effect of heat treatment on microstructure and mechanical properties of twin roll cast and sequential warm rolled ZK60 alloy sheets. J Alloys Compd 476, 324328.
Cho, J.H., Jin, Y.M., Kim, H.W. & Kang, S.B. (2007). Microstructure and mechanical properties of ZK60 alloy sheets during aging. Mater Sci Forum 558559, 159164.
Cho, J.H., Rollett, A.D. & Oh, K.H. (2005). Determination of a mean orientation in electron backscatter diffraction measurements. Metall Mater Trans A 36(12), 34273438.
Choi, S.H., Shin, E.J. & Seong, B.S. (2007). Simulation of deformation twins and deformation texture in an AZ31 Mg alloy under uniaxial compression. Acta Mater 55, 41814192.
Gao, X. & Nie, J.F. (2007). Characterization of strengthening precipitate phases in a Mg-Zn alloy. Scr Mater 56(8), 645648.
He, S.M., Peng, L.M., Zeng, X.Q., Ding, W.J. & Zhu, Y.P. (2006). Comparison of the microstructure and mechanical properties of a ZK60 alloy with and without 1.3 wt.% gadolinium addition. Mater Sci Eng A 433, 175181.
Lorimer, G. & Mackenzie, L. (2005). An EBSD study of deformation and recrystallization in magnesium alloys. Microsc Microanal 11(Suppl 2), 192193.
Maeng, D.Y., Kim, T.S., Lee, J.H., Hong, S.J., Seo, S.K. & Chun, B.S. (2000). Microstructure and strength of rapidly solidified and extrusion Mg-Zn alloys. Scr Mater 43, 385389.
Nave, M.D. & Barnett, M.R. (2004). Microstructures and textures of pure magnesium deformed in plane-strain compression. Scr Mater 51, 881885.
Wei, L.Y., Dunlop, G.L. & Westengen, H. (1995a). The intergranular microstructure of cast Mg-Zn and Mg-Zn-rare earth alloys. Metall Trans A 26, 19471955.
Wei, L.Y., Dunlop, G.L. & Westengen, H. (1995b). Precipitation hardening of Mg-Zn and Mg-Zn-RE alloys. Metall Trans A 26, 17051716.
Xu, D.K., Liu, L., Xu, Y.B. & Han, E.H. (2006). The effect of precipitates on the mechanical properties of ZK60-Y alloy. Mater Sci Eng A 420, 322332.

Keywords

Microstructure Characterization of ZK60 Magnesium Alloys Using TEM and HR-EBSD

  • Jae-Hyung Cho (a1), Soo-Hyun Kim (a2), Sang-Ho Han (a1) and Suk-Bong Kang (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed