Skip to main content Accessibility help
×
Home

Microstructural Characterization of Thick PZT films on Cu Foils Deposited by Electrophoresis

  • Aiying Wu (a1), P.M. Vilarinho (a1), A.I. Kingon (a2) and I. Reaney (a3)

Abstract

Piezoelectric and electrostrictive responses in poled and unpoled ferroelectric and relaxor ferroelectric compositions are of importance in transducers for converting electrical to mechanical impulses and vice-versa. Sensor applications make use of the very high piezoelectric constant dijk of the converse effect, which also permit efficient conversion of electrical to mechanical response. One of the most important families of materials for piezoelectric applications is Pb(Zr,Ti)O3(PZT). The most widely studied composition of PZT lies at the boundary between the tetragonal and rhombohedral phases, known as the morphotropic phase boundary (MPB) and exhibits greatly enhanced dielectric and piezoelectric properties in bulk and thin film. In modern electronic applications, pyroelectric detectors, piezoelectric microsensors, and micromechanical pumps require the integration of PZT films into a variety of device structures. To get sufficiently large piezoelectric strains for optimization of the performance and reliability of the device, thick films in the thickness range of 5–50 μm are desired. On the other hand burying the device components within the substrate is of utmost importance for miniaturization. In comparison to traditional surface mounted components embedded ones will free surface space for a higher functionality of the device, reduce solder points and increase device reliability. Additionally, to reduce the device costs the use of flexible copper foil as substrates is of particular interest. Its high conductivity and compatibility with printed circuit boards makes copper an attractive candidate substrate for embedded application. However, depositing PZT thick films on copper is not trivial, due to the conflict between the high temperature required to sinter PZT (∼1150°C) and low melting temperature of Cu (∼1050°C), in addition to the easy oxidation of Cu. As a consequence the preparation of PZT thick films on Cu involves a complex route to decrease the ceramic sintering temperature and to control the oxygen partial pressure. So far, no successful deposition of PZT thick films on copper foils was reported.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Microstructural Characterization of Thick PZT films on Cu Foils Deposited by Electrophoresis
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Microstructural Characterization of Thick PZT films on Cu Foils Deposited by Electrophoresis
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Microstructural Characterization of Thick PZT films on Cu Foils Deposited by Electrophoresis
      Available formats
      ×

Copyright

Corresponding author

Corresponding author. E-mail: aiying@ua.pt

Microstructural Characterization of Thick PZT films on Cu Foils Deposited by Electrophoresis

  • Aiying Wu (a1), P.M. Vilarinho (a1), A.I. Kingon (a2) and I. Reaney (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed