Skip to main content Accessibility help
×
Home

Microstructural Characterization of High Indium-Composition InXGa1−XN Epilayers Grown on c-Plane Sapphire Substrates

  • Myoungho Jeong (a1), Hyo Sung Lee (a2), Seok Kyu Han (a2), Eun-Jung-Shin (a3), Soon-Ku Hong (a2) (a3), Jeong Yong Lee (a1), Yun Chang Park (a4), Jun-Mo Yang (a4) and Takafumi Yao (a5)...

Abstract

The growth of high-quality indium (In)-rich InXGa1−XN alloys is technologically important for applications to attain highly efficient green light-emitting diodes and solar cells. However, phase separation and composition modulation in In-rich InXGa1−XN alloys are inevitable phenomena that degrade the crystal quality of In-rich InXGa1−XN layers. Composition modulations were observed in the In-rich InXGa1−XN layers with various In compositions. The In composition modulation in the InXGa1−XN alloys formed in samples with In compositions exceeding 47%. The misfit strain between the InGaN layer and the GaN buffer retarded the composition modulation, which resulted in the formation of modulated regions 100 nm above the In0.67Ga0.33N/GaN interface. The composition modulations were formed on the specific crystallographic planes of both the {0001} and {0114} planes of InGaN.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Microstructural Characterization of High Indium-Composition InXGa1−XN Epilayers Grown on c-Plane Sapphire Substrates
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Microstructural Characterization of High Indium-Composition InXGa1−XN Epilayers Grown on c-Plane Sapphire Substrates
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Microstructural Characterization of High Indium-Composition InXGa1−XN Epilayers Grown on c-Plane Sapphire Substrates
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author. E-mail: soonku@cnu.ac.kr

References

Hide All
Doppalapudi, D., Basu, S.N., Ludwig, K.F. & Moustakas, T.D. (1998). Phase separation and ordering in InGaN alloys grown by molecular beam epitaxy. J Appl Phys 84, 13891395.
El-Masry, N.A., Piner, E.L., Liu, S.X. & Bedair, S.M. (1998). Phase separation in InGaN grown by metalorganic chemical vapor deposition. Appl Phys Lett 72, 4042.
Henoc, P., Izrael, A., Quillec, M. & Launois, H. (1982). Composition modulation in liquid phase epitaxial InxGa1−xAsyP1−y layers lattice matched to InP substrates. Appl Phys Lett 40, 963965.
Ho, I.-H. & Stringfellow, G.B. (1996). Solid phase immiscibility in GaInN. Appl Phys Lett 69, 27012703.
Jani, O., Ferguson, I., Honsberg, C. & Kurtz, S. (2007). Design and characterization of GaN/InGaN solar cells. Appl Phys Lett 91, 132117.
Jun, S.W., Seong, T.-Y., Lee, J.H. & Lee, B. (1996). Naturally formed InxAl1−xAs/InyAl1−yAs vertical superlattices. Appl Phys Lett 68, 34433445.
Lee, J.W., Kim, J.-H., Han, S.K., Hong, S.-K., Lee, J.Y., Hong, S.I. & Yao, T. (2010). Interface and defect structures in ZnO films on m-plane sapphire substrates. J Crystal Growth 312, 238244.
Moram, M.A. & Vickers, M.E. (2009). X-ray diffraction of III-nitrides. Rep Prog Phys 72, 036502.
Moustakas, T.D. & Molnar, R.J. (1993). Growth of GaN by ECR-assisted MBE. Physica B 185, 3649.
Singh, R., Doppalapudi, D., Moustakas, T.D. & Romano, L.T. (1997). Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition. Appl Phys Lett 70, 10891091.
Ueda, O., Isozumi, S. & Komiya, S. (1984). Composition-modulated structures in InGaAsP and InGaP liquid phase epitaxial layers grown on (001) GaAs substrates. Jpn J Appl Phys 23, L241L243.
Wu, J., Walukiewicz, W., Yu, K.M., Ager, J.W. III, Haller, E.E., Lu, H., Schaff, W.J., Saito, Y. & Nanishi, Y. (2002). Unusual properties of the fundamental band gap of InN. Appl Phys Lett 80, 39673969.
Yodo, T., Yona, H., Ando, H., Nosei, D. & Harada, Y. (2002). Strong band edge luminescence from InN films grown on Si substrates by electron cyclotron resonance-assisted molecular beam epitaxy. Appl Phys Lett 80, 968970.
Zhu, X.L., Guo, L.W., Ge, B.H., Peng, M.Z., Yu, N.S., Yan, J.F., Zhang, J., Jia, H.Q., Chen, H. & Zhou, J.M. (2007). Observation of metallic indium clusters in thick InGaN layer grown by metal organic vapor deposition. Appl Phys Lett 91, 172110.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed