Skip to main content Accessibility help
×
Home

Microscopy Analysis of Pyramid Formation Evolution with Ultra-Low Concentrated Na2CO3/NaHCO3 Solution on (100) Si for Solar Cell Application

  • Amada Montesdeoca-Santana (a1) (a2), Alejandro González Orive (a3), Alberto Hernández Creus (a3), Benjamín González-Díaz (a1), Dietmar Borchert (a2) and Ricardo Guerrero-Lemus (a1)...

Abstract

An analysis of the nucleation mechanism of pyramids formed in (100) silicon in Na2CO3/NaHCO3 solution has been carried out. This texturization process of silicon by means of Na2CO3/NaHCO3 solutions is of special interest because it can be applied to the silicon solar cell industry to texture solar cell surfaces to decrease the front reflection and enhance light trapping in the cells. For this purpose, two microscopy techniques—scanning electron microscopy and atomic force microscopy—have been used to study the different stages of pyramidal nucleation and formation. The different aspects and factors involved in the texturization process require different analysis conditions and microscopy resolution. Tracing the transformation of determined surface areas and structures has been achieved, contributing clarification of the mechanism of pyramid nucleation in Na2CO3/NaHCO3 solutions.

Copyright

Corresponding author

* Corresponding author. E-mail: rglemus@ull.es

References

Hide All
Allongue, P., Costa-Kieling, V. & Gerischer, H. (1993). Etching of silicon in NaOH solutions. II. Electrochemical studies of n-Si (111) and (100) and mechanism of the dissolution. J Electrochem Soc 140, 10181026.
Bean, K.E. (1978). Anisotropic etching of silicon. IEEE Trans Electron Devices 25, 11851193.
Bhatnagar, Y.K. & Nathan, A. (1993). On pyramidal protrusions in anisotropic etching of ⟨100⟩ silicon. Sens Actuators A 36, 233240.
Edwards, M., Bowden, S., Das, U. & Burrows, M. (2008). Effect of texturing and surface preparation on lifetime and cell performance in heterojunction silicon solar cells. Sol Energy Mater Sol Cells 92, 13731377.
Elwenspoek, M. (1993). On the mechanism of anisotropic etching of silicon. J Electrochem Soc 140, 20752080.
Gosálvez, M.A., Nieminen, R.M., Kilpinen, P., Haimi, E. & Lindroos, V. (2001). Anisotropic wet chemical etching of crystalline silicon: Atomistic Monte-Carlo simulations and experiments. Appl Surf Sci 178, 726.
Marrero, N., González-Díaz, B., Guerrero-Lemus, R., Borchert, D. & Hernández-Rodríguez, C. (2007). Optimization of sodium carbonate texturization on large-area crystalline silicon solar cells. Sol Energy Mater Sol Cells 91, 19431947.
Montesdeoca-Santana, A., Jiménez-Rodríguez, E., González-Díaz, B., Borchert, D. & Guerrero-Lemus, R. (2012). Ultra-low concentration Na2CO3/NaHCO3 solution for texturization of crystalline silicon solar cells. Prog Photovolt Res Appl 20, 191196.
Nishimoto, Y. & Namba, K. (2000). Investigation of texturization for crystalline silicon solar cells with sodium carbonate solutions. Sol Energy Mater Sol Cells 61, 393402.
Palik, E.D., Bermudez, V.M. & Glembocki, O.J. (1985). Ellipsometric study of orientation-dependent etching of silicon in aqueous KOH. J Electrochem Soc 132, 871884.
Palik, E.D., Glembocki, O.J., Heard, I., Burno, P.S. & Tenerz, L. (1991). Etching roughness for (100) silicon surfaces in aqueous KOH. J Appl Phys 70, 32913300.
Powell, D.M., Winkler, M.T., Choi, H.J., Simmons, C.B., Berney Needleman, D. & Buonassisi, T. (2012). Crystalline silicon photovoltaics: A cost analysis framework for determining technology pathways to reach baseload electricity costs. Energy Environ Sci 5, 58745883.
Rola, K.P. & Zubel, I. (2011). Investigation of Si (h k l) surfaces etched in KOH solutions saturated with tertiary-butyl alcohol. J Micromech Microeng 21, 115026.
Schnakenberg, U., Benecke, W. & Lange, P. (1991). TMAHW etchants for silicon micromachining. In Proceedings of the 6th International Conference on Solid-State Sensors and Actuators, Tech. Dig. Transducers 91, pp. 815818, San Francisco.
Schröder, H., Obermeier, E. & Steckenborn, A. (1999). Micropyramidal hillocks on KOH etched {100} silicon surfaces: Formation, prevention and removal. J Micromech Microeng 9, 139145.
Seidel, H., Csepregi, L., Heuberger, A. & Baumgärtel, H. (1990). Anisotropic etching of crystalline silicon in alkaline solutions I. Orientation dependence and behavior of passivation layers. J Electrochem Soc 137, 36123626.
Sparber, W., Schultz, O., Biro, D., Emanuel, G., Preu, R., Poddey, A. & Borchert, D. (2003). Comparison of texturing methods for monocrystalline silicon solar cells using KOH and Na2CO3 . In Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, pp. 13721375, Osaka.
Tan, S., Han, H., Boudreau, R. & Reed, M.L. (1994). Process induced hillock defects on anisotropically etched silicon. In Proceedings of the IEEE Workshop on Micro Electro Mechanical Systems, pp. 229234. Oiso: IEEE.
Van Veenendaal, E., Sato, K., Shikida, M., Nijdam, A.J. & Van Suchtelen, J. (2001). Micro-morphology of single crystalline silicon surfaces during anisotropic wet chemical etching in KOH: velocity source forests. Sens Actuators A 93, 232242.

Keywords

Microscopy Analysis of Pyramid Formation Evolution with Ultra-Low Concentrated Na2CO3/NaHCO3 Solution on (100) Si for Solar Cell Application

  • Amada Montesdeoca-Santana (a1) (a2), Alejandro González Orive (a3), Alberto Hernández Creus (a3), Benjamín González-Díaz (a1), Dietmar Borchert (a2) and Ricardo Guerrero-Lemus (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed