Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-18T15:12:24.493Z Has data issue: false hasContentIssue false

Metallographic Preparation of Zn-21Al-2Cu Alloy for Analysis by Electron Backscatter Diffraction (EBSD)

Published online by Cambridge University Press:  31 March 2014

M. G. Rodríguez-Hernández*
Affiliation:
Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, San Luis Potosí, San Luis Potosí, 78290, México
E. E. Martínez-Flores
Affiliation:
Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, San Luis Potosí, San Luis Potosí, 78290, México
G. Torres-Villaseñor
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, D. F., 04519, México
M. Dolores Escalera
Affiliation:
Departamento de Ciencia e Ingeniería de Materiales, Universidad Rey Juan Carlos, Móstoles, Madrid, 28933, España
*
*Corresponding author. mgpergz@hotmail.com
Get access

Abstract

Samples of Zn-21Al-2Cu alloy (Zinalco) that will be heavily deformed were prepared using five different manual mechanical metallographic methods. Samples were analyzed before tensile testing using the orientation imaging microscopy-electron backscatter diffraction (OIM-EBSD) technique. The effect of type and particle size during the final polishing stages for this material were studied in order to identify a method that produces a flat, damage free surface with a roughness of about 50 nm and clean from oxide layers, thereby producing diffraction patterns with high image quality (IQ) and adequate confidence indexes (CI). Our results show that final polishing with alumina and silica, as was previously suggested by other research groups for alloys that are difficult to prepare or alloys with low melting point, are not suitable for manual metallographic preparation of this alloy. Indexes of IQ and CI can be used to evaluate methods of metallographic preparation of samples studied using the OIM-EBSD technique.

Type
Materials Applications
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gaishun, V.E., Tulenkova, O.I., Melnichenko, I.M., Baryshnin, S.A., Potapenok, Y.A., Xlebokazov, A.P. & Strek, W. (2002). Preparation and properties of colloidal nanosize silica dioxide for polishing of monocrystalline silicon wafers. Available at: http://materialsscience.pwr.wroc.pl/bi/vol20no2/articles/ms_2001_013.pdf.Google Scholar
Guerrero, R., Farias, M.H. & Cota-Araiza, L. (2002). Increase in corrosion resistance of Zn–22Al–2Cu alloy by depositing an Y2O3 film studied by Auger electron spectroscopy. Appl Surf Sci 185(3–4), 248254.Google Scholar
Hernandez, L.S., Miranda, J.M., Narvaez, L. & Dominguez, O. (2003). Comparative corrosion behaviour of Zn-21Al-2Cu alloy and galvanized steel. Corro Prevent Contr 50(2), 5363.Google Scholar
Humphreys, F.J. (1999). Quantitative metallography by electron backscattered diffraction. J Microsc (Oxf) 195, 170185.Google Scholar
Negrete, J., Torres, A., Narvaez, L., Zamora, J. & Torres-Villasenor, G. (1999). Microstructural changes during hot rolling of the cast Zn-21Al-2Cu alloy. Revista Mexicana De Fisica 45, 134137.Google Scholar
Negrete, J., Torres, A. & Torres-Villaseñor, G. (1995). Thermal treatments of as-extruded eutectoid Zn-21.2Al-1.9 wt% Cu alloy. J Mater Sci Lett 14(15), 10921094.Google Scholar
Nowell, M.M., Witt, R.A. & True, B. (2005). EBSD sample preparation: Techniques, tips, and tricks. Microsc Microanal 11(Suppl S02), 504505.Google Scholar
Ramos Azpeitia, M., Martinez Flores, E.E. & Torres Villasenor, G. (2012). Superplastic behavior of Zn-Al eutectoid alloy with 2% Cu. J Mater Sci 47(17), 62066212.Google Scholar
Schwartz, A.J., Kumar, M., Adams, B.L. & Field, D.P.E. (2009). Electron Backscatter Diffraction in Materials Science. New York: Springer.CrossRefGoogle Scholar
Torres-Villaseñor, G., Ugalde, A., Hernandez, L. & Singer, I.L. (1984). Water-Vapor corrosion of lamellar, superplastic and cast dendritic Zn-21Al alloy. Corros Sci 24(3), 4.Google Scholar
TSL-EDAX (2001). OIM Analysis User Manual. Utah, USA: TexSEM Laboratories Incorporated.Google Scholar
Vander Voort, G.F. (1999). Metallography: Principles and Practice. OH, NY: Mc Graw Hill, ASM International, Materials Park.Google Scholar
Vander Voort, G.F. (2011 a). Metallographic specimen preparation for electron backscattered diffraction. Part I. Pract Metallogr 48(9), 454473.Google Scholar
Vander Voort, G.F. (2011 b). Metallographic specimen preparation for electron backscattered diffraction. Part II. Pract Metallogr 48(10), 527543.Google Scholar
Waryoba, D. & Kalu, P. (2003). Orientation imaging microscopy: Sample preparation for heavily drawn copper wires. Microsc Microanal 9(Suppl S02), 8485.Google Scholar
Witt, R. & Nowell, M. (2011). Specimen preparation of difficult materials for EBSD characterization. Microsc Microanal 17(Suppl S2), 414415.CrossRefGoogle Scholar
Wright, S.I. & Nowell, M.M. (2006). EBSD image quality mapping. Microsc Microanal 12(01), 7284.Google Scholar
Wynick, G.L. & Boehlert, C.J. (2005). Electron backscattered diffraction characterization technique for analysis of a Ti2AlNb intermetallic alloy. J Microsc (Oxf) 219, 115121.Google Scholar
Zhu, Y.H., Lee, W.B. & To, S. (2003). Use of EBSD to study stress induced microstructural changes in Zn-Al based alloy. Mater Sci Eng A-Struct Mater 348(1–2), 614.Google Scholar
Zhu, Y.H., Lee, W.B., Yeung, C.F. & Yue, T.M. (2001). EBSD of Zn-rich phases in Zn-Al-based alloys. Mater Charact 46(1), 1923.Google Scholar
Zipperian, D. (2011). Final polishing. In Metallographic Handbook , PACE Technologies (Ed.), vol. 2, 344pp. Tucson, AZ, USA: Technologies, Pace.Google Scholar