Skip to main content Accessibility help
×
Home

Low-Temperature Cathodoluminescence Investigations of High-Quality Zinc Oxide Nanorods

  • Bartlomiej S. Witkowski (a1), Lukasz Wachnicki (a1), Sylwia Gieraltowska (a1), Anna Reszka (a1), Bogdan J. Kowalski (a1) and Marek Godlewski (a1) (a2)...

Abstract

We present results of cathodoluminescence (CL) investigations of high-quality zinc oxide (ZnO) nanorods obtained by an extremely fast hydrothermal method on a silicon substrate. A scanning electron microscopy (SEM) system equipped with CL allows direct comparison of SEM images and CL maps, taken from exactly the same areas of samples. Investigations are performed at a temperature of 5 K. An interlink between sample microstructure and emission properties is investigated. CL confirms a very high quality of ZnO nanorods produced by our method. In addition, the presence of super radiation effects in ZnO nanorod arrays is suggested.

Copyright

Corresponding author

* Corresponding author. bwitkow@ifpan.edu.pl

References

Hide All
Bruckbauer, J., Edwards, P.R., Wang, T. & Martin, R.W. (2011). High resolution cathodoluminescence hyperspectral imaging of surface features in InGaN/GaN multiple quantum well structures. Appl Phys Lett 98, 141908.
Chen, Z. & Gao, L. (2006). A facile route to ZnO nanorod arrays using wet chemical method. J Cryst Growth 293, 522527.
Dicke, R.H. (1954). Coherence in spontaneous radiation processes. Phys Rev 93, 99110.
Foley, M., Ton-That, C. & Phillips, M.R. (2010). Luminescent properties of ZnO structures grown with a vapour transport method. Thin Solid Films 518, 42314233.
Gieraltowska, S., Wachnicki, L., Witkowski, B.S., Godlewski, M. & Guziewicz, E. (2012). Atomic layer deposition grown composite dielectric oxides and ZnO for transparent electronic applications. Thin Solid Films 520(14), 46944697.
Gieraltowska, S., Wachnicki, L., Witkowski, B.S., Guziewicz, E. & Godlewski, M. (2013). Thin films of high-k oxides and ZnO for transparent electronic devices. Chem Vapor Depos 19(4–6), 213220.
Greene, L.E., Law, M., Tan, D.H., Montano, M., Goldberger, J., Somorjai, G. & Yang, P.D. (2005). General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Lett 5, 12311236.
Guziewicz, E., Godlewski, M., Krajewski, T., Wachnicki, L., Szczepanik, A., Kopalko, K., Wójcik-Głodowska, A., Przeździecka, E., Paszkowicz, W., Lusakowska, E., Kruszewski, P., Huby, N., Tallarida, G. & Ferrari, S. (2009). ZnO grown by atomic layer deposition: A material for transparent electronics and organic heterojunctions. J Appl Phys 105, 122413.
Klingshirn, C., Fallert, J., Zhou, H., Sartor, J., Thiele, C., Maier-Flaig, F., Schneider, D. & Kalt, H. (2010). 65 years of ZnO research—old and very recent results. Phys Status Solidi B 247(6), 14241447.
Krajewski, T., Guziewicz, E., Godlewski, M., Wachnicki, L., Kowalik, I.A., Wojcik-Glodowska, A., Lukasiewicz, M., Kopalko, K., Osinniy, V. & Guziewicz, M. (2009). The influence of growth temperature and precursors’ doses on electrical parameters of ZnO thin films grown by atomic layer deposition technique. Microelectron J 40(2), 293295.
Li, Q., Xu, S.J., Xie, M.H. & Tong, S.Y. (2005). Origin of the ‘S-shaped’ temperature dependence of luminescent peaks from semiconductors. J Phys Condens Matter 17, 48534858.
Luka, G., Godlewski, M., Guziewicz, E., Stakhira, P., Cherpak, V. & Volynyuk, D. (2012). ZnO films grown by atomic layer deposition for organic electronics. Semicond Sci Technol 27, 074006.
Meyer, B.K., Alves, H., Hofmann, D.M., Kriegseis, W., Forster, D., Bertram, F., Christen, J., Hoffmann, A., Straßburg, M., Dworzak, M., Haboeck, U. & Rodina, A.V. (2004). Bound exciton and donor–acceptor pair recombinations in ZnO. Phys Stat Sol B 241(2), 231260.
Ozgur, U., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., Dogan, S., Avrutin, V., Cho, S.J. & Morkoc, H. (2005). A comprehensive review of ZnO materials and devices. J Appl Phys 98, 041301.
Scully, M.O. & Svidzinsky, A.A. (2009). The super of superradiance. Science 325(5947), 15101511.
Wachnicki, L., Krajewski, T., Luka, G., Witkowski, B., Kowalski, B., Kopalko, K., Domagala, J.Z., Guziewicz, M., Godlewski, M. & Guziewicz, E. (2010). Monocrystalline zinc oxide films grown by atomic layer deposition. Thin Solid Films 518(16), 45564559.
Witkowski, B.S., Wachnicki, L., Gieraltowska, S., Dluzewski, P., Szczepanska, A., Kaszewski, J. & Godlewski, M. (2014). Ultra-fast growth of the monocrystalline zinc oxide nanorods from the aqueous solution. Int J Nanotechnol 11(9–11), 758772.
Witkowski, B.S., Wachnicki, L., Jakiela, R., Guziewicz, E. & Godlewski, M. (2011). Cathodoluminescence measurements at liquid helium temperature of poly- and monocrystalline ZnO films. Acta Phys Pol A 120(6-A), A28A30.
Witkowski, B.S., Wachnicki, L., Nowakowski, P., Suchocki, A. & Godlewski, M. (2013). Temperature-dependence of cathodoluminescence of zinc oxide monolayers obtained by atomic layer deposition. Optica Applicata 43, 187194.
Xu, J., Pan, Q., Shun, Y. & Tian, Z. (2000). Grain size control and gas sensing properties of ZnO gas sensor. Sensor Actuators B Cheml 66(1–3), 277279.
Yu, S.F., Yuen, C., Lau, S.P., Park, W.I. & Yi, G.C. (2004). Random laser action in ZnO nanorod arrays embedded in ZnO epilayers. Appl Phys Lett 84, 3241.

Keywords

Related content

Powered by UNSILO

Low-Temperature Cathodoluminescence Investigations of High-Quality Zinc Oxide Nanorods

  • Bartlomiej S. Witkowski (a1), Lukasz Wachnicki (a1), Sylwia Gieraltowska (a1), Anna Reszka (a1), Bogdan J. Kowalski (a1) and Marek Godlewski (a1) (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.