Skip to main content Accessibility help
×
Home

Local Response of Sialoliths to Lithotripsy: Cues on Fragmentation Outcome

  • Pedro Nolasco (a1), Ana J. dos Anjos (a2), José Dias (a3), Paulo V. Coelho (a4) (a5), Carla Coelho (a4) (a5), Manuel Evaristo (a6), Albano Cavaleiro (a6), António Maurício (a7), Manuel F. C. Pereira (a7), Virgínia Infante (a8), António P. Alves de Matos (a9), Raúl C. Martins (a10) and Patricia A. Carvalho (a1) (a11)...

Abstract

Lithotripsy methods show relatively low efficiency in the fragmentation of sialoliths compared with the success rates achieved in the destruction of renal calculi. However, the information available on the mechanical behavior of sialoliths is limited and their apparently tougher response is not fully understood. This work evaluates the hardness and Young’s modulus of sialoliths at different scales and analyzes specific damage patterns induced in these calcified structures by ultrasonic vibrations, pneumoballistic impacts, shock waves, and laser ablation. A clear correlation between local mechanical properties and ultrastructure/chemistry has been established: sialoliths are composite materials consisting of hard and soft components of mineralized and organic nature, respectively. Ultrasonic and pneumoballistic reverberations damage preferentially highly mineralized regions, leaving relatively unaffected the surrounding organic matter. In contrast, shock waves leach the organic component and lead to erosion of the overall structure. Laser ablation destroys homogeneously the irradiated zones regardless of the mineralized/organic nature of the underlying ultrastructure; however, damage is less extensive than with mechanical methods. Overall, the present results show that composition and internal structure are key features behind sialoliths’ comminution behavior and that the organic matter contributes to reduce the therapeutic efficiency of lithotripsy methods.

Copyright

Corresponding author

* Corresponding author. pedro.nolasco@ist.utl.pt

References

Hide All
Ahmed, K., Dasgupta, P. & Khan, M.S. (2006). Cystine calculi: Challenging group of stones. Postgrad Med J 82, 799801.
Alves de Matos, A.P., Carvalho, P.A., Almeida, A., Duarte, L., Vilar, R. & Leitao, J. (2007). On the structural diversity of sialoliths. Microsc Microanal 13, 390396.
Anneroth, G., Isacsson, G. & Lundquist, P.G. (1979). The mineral content of salivary calculi. A quantitative microradiographic and diffractometric study. Dentomaxillofac Radiol 8, 3341.
Argon, A.S., Im, J. & Safoglu, R. (1975). Cavity formation from inclusions in ductile fracture. Metall Trans A 6, 825.
Capaccio, P., Torretta, S., Ottavian, F., Sambataro, G. & Pignataro, L. (2007). Modern management of obstructive salivary diseases. Acta Otorhinolaryngol Ital 27, 161172.
Cernavin, I. (1995). A comparison of the effects of Nd:YAG and Ho:YAG laser irradiation on dentine and enamel. Aust Dent J 40, 7984.
Cohen, N.P. & Whitfield, H.N. (1993). Mechanical testing of urinary calculi. World J Urol 11, 1318.
Doerner, M.F. & Nix, W.D. (1986). A method for interpreting the data from depth-sensing indentation instruments. J Mater Res 1, 601609.
Escudier, M.P. (2001). Epidemiology and aetiology of salivary calculi. In Controversies in the Management of Salivary Gland Disease, McGurk, M. & Combes, J.G. (Eds.), pp. 251259. Oxford: Oxford University Press.
Fong, H., Sarikaya, M., White, S.N. & Snead, M.L. (1999). Nano-mechanical properties profiles across dentin–enamel junction of human incisor teeth. Mater Sci Eng C 7, 119128.
Gross, K.A. & Bhadang, K.A. (2004). Sintered hydroxyfluorapatites. Part III: Sintering and resultant mechanical properties of sintered blends of hydroxyapatite and fluorapatite. Biomaterials 25, 13951405.
Gross, K.A. & Rodriguez-Lorenzo, L.M. (2004). Sintered hydroxyfluorapatites. Part II: Mechanical properties of solid solutions determined by microindentation. Biomaterials 25, 13851394.
Gullerud, A.S., Gao, X., Dodds, R.H. Jr. & Haj-Ali, R. (2000). Simulation of ductile crack growth using computational cells: Numerical aspects. Eng Fract Mech 66, 6592.
Habelitz, S., Marshall, S.J., Marshall, G.W. Jr. & Balooch, M. (2001). Mechanical properties of human dental enamel on the nanometre scale. Arch Oral Biol 46, 173183.
Harrill, J.A., King, J.S. Jr. & Boyce, W.H. (1959). Structure and composition of salivary calculi. Laryngoscope 69, 481492.
Harrison, J.D. (2009). Causes, natural history, and incidence of salivary stones and obstructions. Otolaryngol Clin North Am 42, 927947.
He, L.H. & Swain, M.V. (2007). Influence of environment on the mechanical behaviour of mature human enamel. Biomaterials 28, 45124520.
Heimbach, D., Munver, R., Zhong, P., Jacobs, J., Hesse, A., Muller, S.C. & Preminger, G.M. (2000). Acoustic and mechanical properties of artificial stones in comparison to natural kidney stones. J Urol 164, 537544.
Iro, H., Zenk, J., Escudier, M.P., Nahlieli, O., Capaccio, P., Katz, P., Brown, J. & McGurk, M. (2009). Outcome of minimally invasive management of salivary calculi in 4,691 patients. Laryngoscope 119, 263268.
Jayasree, R.S., Gupta, A.K., Vivek, V. & Nayar, V.U. (2008). Spectroscopic and thermal analysis of a submandibular sialolith of Wharton’s duct resected using Nd:YAG laser. Lasers Med Sci 23, 125131.
Kim, H.S., Hong, S.I. & Kim, S.J. (2001). On the rule of mixtures for predicting the mechanical properties of composites with homogeneously distributed soft and hard particles. J Mater Process Technol 112, 109113.
Lokhandwalla, M. & Sturtevant, B. (2000). Fracture mechanics model of stone comminution in ESWL and implications for tissue damage. Phys Med Biol 45, 19231940.
Marchal, F., Kurt, A.M., Dulguerov, P. & Lehmann, W. (2001). Retrograde theory in sialolithiasis formation. Arch Otolaryng Head Neck Surg 127, 6668.
McClain, P.D., Lange, J.N. & Assimos, D.G. (2013). Optimizing shock wave lithotripsy: A comprehensive review. Rev Urol 15, 4960.
Meyers, M.A., Chen, P.-Y., Lin, A.Y.-M. & Seki, Y. (2008). Biological materials: Structure and mechanical properties. Prog Mater Sci 53, 1206.
Nolasco, P., Anjos, A.J., Marques, J.M., Cabrita, F., da Costa, E.C., Mauricio, A., Pereira, M.F.C., de Matos, A.P. & Carvalho, P.A. (2013). Structure and growth of sialoliths: Computed microtomography and electron microscopy investigation of 30 specimens. Microsc Microanal 19, 11901203.
Oliver, W.C. & Pharr, G.M. (2004). Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J Mater Res 19, 320.
Park, S., Wang, D.H., Zhang, D., Romberg, E. & Arola, D. (2008). Mechanical properties of human enamel as a function of age and location in the tooth. J Mater Sci Mater Med 19, 23172324.
Phillips, J. & Withrow, K. (2014). Outcomes of holmium laser–assisted lithotripsy with sialendoscopy in treatment of sialolithiasis. Otolaryngol Head Neck Surg 150, 962967.
Pittomvils, G., Vandeursen, H., Wevers, M., Lafaut, J.P., De Ridder, D., De Meester, P., Boving, R. & Baert, L. (1994). The influence of internal stone structure upon the fracture behaviour of urinary calculi. Ultrasound Med Biol 20, 803810.
Prien, E.L. & Prien, E.L. Jr. (1968). Composition and structure of urinary stone. Am J Med 45, 654672.
Qin, Q. & Ye, J. (2015). Toughening Mechanisms in Composite Materials. Swaston, Cambridge: Woodhead Publishing.
Slomiany, B.L., Murty, V.L., Aono, M., Slomiany, A. & Mandel, I.D. (1982). Lipid composition of the matrix of human submandibular salivary gland stones. Arch Oral Biol 27, 673677.
Swamy, K.M., Sarveswara Rao, K., Narayana, K.L., Murty, J.S. & Ray, H.S. (1995). Application of ultrasound in leaching. Miner Process Extr Metall Rev 14, 179192.
Tanaka, N., Ichinose, S., Adachi, Y., Mimura, M. & Kimijima, Y. (2003). Ultrastructural analysis of salivary calculus in combination with X-ray microanalysis. Med Electron Microsc 36, 120126.
Verdier, J.M. (1993). [Macromolecular inhibitors of crystallization in saliva and bile]. Nephrologie 14, 251255.
Zhang, J.-h. & Liu, Z.-h. (1998). Study of the relationship between fractal dimension and viscosity ratio for viscous fingering with a modified DLA model. J Petrol Sci Eng 21, 123128.
Zheng, W. & Denstedt, J.D. (2000). Intracorporeal lithotripsy. Update on technology. Urol Clin North Am 27, 301313.
Zhong, P., Chuong, C.J., Goolsby, R.D. & Preminger, G.M. (1992). Microhardness measurements of renal calculi: Regional differences and effects of microstructure. J Biomed Mater Res 26, 11171130.
Zhong, P., Chuong, C.J. & Preminger, G.M. (1993). Characterization of fracture toughness of renal calculi using a microindentation technique. J Mater Sci Lett 12, 14601462.
Zhong, P. & Preminger, G.M. (1994). Mechanisms of differing stone fragility in extracorporeal shockwave lithotripsy. J Endourol 8, 263268.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed