Skip to main content Accessibility help

Is Microanalysis Possible in the Helium Ion Microscope?

  • David C. Joy (a1) (a2) and Brendan J. Griffin (a2) (a3)


Because the ability to perform some form of chemical microanalysis has become an essential feature for any microscope, it is necessary to investigate what options are available in the new “ORION” helium ion microscope (HIM). The HIM has the ability to visualize local variations in specimen chemistry in both the ion induced secondary electron and the Rutherford backscattered imaging modes, but this provides only limited and qualitative information. Quantitative, elementally specific, microanalysis could be performed in the HIM using secondary electron spectroscopy, Rutherford backscattered ion spectroscopy, or secondary ion mass spectroscopy, but while each of these options has promise, none of them can presently guarantee either reliable element identification or quantitative analysis across the periodic table.


Corresponding author

Corresponding author. E-mail:


Hide All
Funsten, H.O., Ritzau, S.M., Harper, R.W. & Korle, R. (2003). Fundamental limits to the detection of low-energy ions using silicon solid state detectors. Appl Phys Lett 84(18), 35523554.
Gatti, E. & Rehak, P. (1984). Semiconductor drift chamber—An application of a novel charge transport scheme. Nucl Instrum Meth A 225, 608614.
Goldstein, J.I., Newbury, D.E., Joy, D.C., Lyman, C., Echlin, P.E., Lifshin, E., Sawyer, L. & Michael, J. (2003). Scanning Electron Microscopy and X-Ray Microanalysis, 3rd ed.New York: Kluewer Academic/Plenum Press.
Johansson, S.A.E. & Johansson, T.B. (1976). Proton induced X-ray spectroscopy. Nucl Instrum Methods 137, 473512.
Joy, D.C. (1985). The EDS detector—A quantitative model. Rev Sci Instrum 56, 17721779.
Joy, D.C., Meyer, H.M., Bolorizadeh, M., Lin, Y. & Newbury, D.E. (2007). On the production of X-rays by low energy ion beams. Scanning 29, 15.
Levi-Setti, R. (1983). An ion microscope. In Proc. Scanning Electron Microscopy 1974, Johari, O. (Ed.), vol. 1, pp. 125–130. Chicago, IL: IITRI. See also Levi-Setti, R. (1983). Ion channeling effects in scanning ion microscopy. Scan Electron Microsc 1, 18.
Lin, Y. & Joy, D.C. (2005). A new examination of secondary electron yield data. Surf Interf Anal 37, 895900.
Mayer, M. (2006). SIMNRA Users Guide. Technical Report IPP 9/113. Garching, Germany: Max-Planck-Institut für Plasmaphysik.
Ramachandra, R., Griffin, B.J. & Joy, D.C. (2009). A model of secondary electron imaging in the helium ion scanning microscope. Ultramicroscopy 109, 748757.
Suzuki, Y. (2008). A comparison of electron and ion induced secondary electron spectra. Microsc Today 16, 610.
Tesmer, J.R. & Nastasi, M. (1995). Handbook of Modern Ion Beam Materials Analysis. Boston, MA: Materials Research Society.
Thompson, J.J. (1912). Ionization by moving particles. Phil Mag 28, 449457.
Ward, B.M., Notte, J. & Economou, N.P. (2006). Helium ion microscopy. J Vac Sci Technol B 24, 28712874.


Is Microanalysis Possible in the Helium Ion Microscope?

  • David C. Joy (a1) (a2) and Brendan J. Griffin (a2) (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed