Skip to main content Accessibility help

Investigation of III–V Nanowires by Plan-View Transmission Electron Microscopy: InN Case Study

  • Esperanza Luna (a1), Javier Grandal (a1) (a2), Eva Gallardo (a1) (a3), José M. Calleja (a3), Miguel Á. Sánchez-García (a2), Enrique Calleja (a2) and Achim Trampert (a1)...


We discuss observations of InN nanowires (NWs) by plan-view high-resolution transmission electron microscopy (TEM). The main difficulties arise from suitable methods available for plan-view specimen preparation. We explore different approaches and find that the best results are obtained using a refined preparation method based on the conventional procedure for plan-view TEM of thin films, specifically modified for the NW morphology. The fundamental aspects of such a preparation are the initial mechanical stabilization of the NWs and the minimization of the ion-milling process after dimpling the samples until perforation. The combined analysis by plan-view and cross-sectional TEM of the NWs allows determination of the degree of strain relaxation and reveals the formation of an unintentional shell layer (2–3-nm thick) around the InN NWs. The shell layer is composed of bcc In2O3 nanocrystals with a preferred orientation with respect to the wurtzite InN: In2O3 [111] || InN [0001] and In2O3 <110> || InN< $$ 11\bar 20 $$ >.


Corresponding author



Hide All
Ahn, H.B., Kim, Y.H., Kim, M.D., Kim, C.S. & Lee, J.Y. (2010). Formation and microstructural characterization of In2O3 sheath layer on InN nanostructures. Chem Phys Lett 499, 131135.
Calleja, E., Grandal, J., Sánchez-García, M.A., Niebelschütz, M., Cimalla, V. & Ambacher, O. (2007). Evidence of electron accumulation at nonpolar surfaces of InN nanocolumns. Appl Phys Lett 90, 262110.
Consonni, V., Hanke, M., Knelangen, M., Geelhaar, L., Trampert, A. & Riechert, H. (2011). Nucleation mechanisms of self-induced GaN nanowires grown on an amorphous interlayer. Phys Rev B 83, 035310.
Dayeh, S.A., Tang, W., Boioli, F., Kavanagh, K.L., Zheng, H., Wang, J., Mack, N.H., Swadener, G., Huang, J.Y., Miglio, L., Tu, K.-N. & Picraux, S.T. (2013). Direct measurement of coherency limits for strain relaxation in heteroepitaxial core/shell nanowires. Nano Lett 13, 18691876.
Dimakis, E., Jahn, U., Ramsteiner, M., Tahraoui, A., Grandal, J., Kong, X., Marquardt, O., Trampert, A., Riechert, H. & Geelhaar, L. (2014). Coaxial multishell (In,Ga)As/GaAs nanowires for near-infrared emission on Si substrates. Nano Lett 14, 26042609.
González, D., Lozano, J.G., Herrera, M., Browning, N.D., Ruffenach, S., Briot, O. & García, R. (2009). Structural changes during the natural aging process of InN quantum dots. J Appl Phys 105, 013527.
Grandal, J. & Sánchez-García, M.A. (2005). InN layers grown on silicon substrates: Effect of substrate temperature and buffer layers. J Crys Growth 278, 373377.
Grandal, J., Sánchez-García, M.A., Calleja, E., Luna, E. & Trampert, A. (2007). Accommodation mechanism of InN nanocolumns grown on Si(111) substrates by molecular beam epitaxy. Appl Phys Lett 91, 021902.
Kehagias, Th., Delimitis, A., Komninou, Ph., Iliopoulos, E., Dimakis, E., Georgakilas, A. & Nouet, G. (2005). Misfit accommodation of compact and columnar InN epilayers grown on Ga-face GaN(0001) by molecular-beam epitaxy. Appl Phys Lett 86, 151905.
King, P.D.C., Veal, T.D., Fuchs, F., Wang, Ch.Y., Payne, D.J., Bourlange, A., Zhang, H., Bell, G.R., Cimalla, V., Ambacher, O., Egdell, R.G., Bechsted, F. & McConville, C.F. (2009). Band gap, electronic structure, and surface electron accumulation of cubic and rhombohedral In2O3. Phys Rev B 79, 205211.
King, P.D.C., Veal, T.D., Payne, D.J., Bourlange, A., Egdell, R.G. & McConville, C.F. (2008). Surface electron accumulation and the charge neutrality level in In2O3. Phys Rev Lett 101, 116808.
Lazić, S., Gallardo, E., Calleja, J.M., Agulló-Rueda, F., Grandal, J., Sánchez-García, M.A., Calleja, E., Luna, E. & Trampert, A. (2007). Phonon-plasmon coupling in electron surface accumulation layers in InN nanocolumns. Phys Rev B 76, 205319.
Lenrick, F., Ek, M., Jacobsson, D., Borgström, M.T. & Wallenberg, L.R. (2014). FIB plan and side view cross-sectional TEM. Microsc Microanal 20, 133140.
Liliental-Weber, Z., Hawkridge, M., Mangum, J. & Kryliouk, O. (2008). InN nanorods and nanowires grown on different substrates. Phys Stat Sol (c) 5, 17951798.
Lozano, J.G., Sánchez, A.M., García, R., González, D., Briot, O. & Ruffenach, S. (2006). Misfit relaxation of InN quantum dots: Effect of the GaN capping layer. Appl Phys Lett 88, 151913.
Luna, E., Guzmán, A., Trampert, A. & Álvarez, G. (2012). Critical role of two-dimensional island-mediated growth on the formation of semiconductor heterointerfaces. Phys Rev Lett 109, 126101.
Mahboob, I., Veal, T.D., McConville, C.F., Lu, H. & Schaff, W.J. (2004). Intrinsic electron accumulation at clean InN surfaces. Phys Rev Lett 92, 036804.
Noguchi, M., Hirakawa, K. & Ikoma, T. (1991). Intrinsic electron accumulation layers on reconstructed clean InAs(100) surfaces. Phys Rev Lett 66, 22432246.
Rudolph, D., Funk, S., Döblinger, M., Morkötter, S., Hertenberger, S., Schweickert, L., Becker, J., Matich, S., Bichler, M., Spirkoska, D., Zardo, I., Finley, J.J., Abstreiter, G. & Koblmüller, G. (2013). Spontaneous alloy composition ordering in GaAs-AlGaAs core-shell nanowires. Nano Lett 13, 15221527.
Segura-Ruiz, J., Garro, N., Cantarero, A., Denker, C., Malindretos, J. & Rizzi, A. (2009). Optical studies of MBE-grown InN nanocolumns: Evidence of surface electron accumulation. Phys Rev B 79, 115305.
Segura-Ruiz, J., Molina-Sánchez, A., Garro, N., García-Cristóbal, A., Cantarero, A., Iikawa, F., Denker, C., Malindretos, J. & Rizzi, A. (2010). Inhomogeneous free-electron distribution in InN nanowires: Photoluminescence excitation experiments. Phys Rev B 82, 125319.
Schreiber, D.K., Adusumilli, P., Hemesath, E.R., Seidman, D.N., Petford-Long, A.K. & Lauhon, L.J. (2012). A method for directly correlating site-specific cross-sectional and plan-view transmission electron microscopy of individual nanostructures. Microsc Microanal 18, 14101418.
Suzuki, T. & Hirabayashi, Y. (1993). First observation of the Si(111)-7×7↔1×1 phase transition by the optical second harmonic generation. Jpn J Appl Phys 32, L610L613.
Tambe, M.J., Allard, L.F. & Gradečak, S. (2010). Characterization of core-shell GaAs/AlGaAs nanowire heterostructures using advanced electron microscopy. J Phys: Conf Ser 209, 012033.
Trampert, A., Ristic, J., Jahn, U., Calleja, E. & Ploog, K.H. (2004). TEM study of (Ga,Al)N nanocolumns and embedded GaN nanodics. Proc 13th Int Conf Microsc Semiconducting Mater 180, 167.
Wang, Q., Nguyen, H.P.T., Cui, K. & Mi, Z. (2012). High efficiency ultraviolet emission from AlxGa1-xN core-shell nanowire heterostructures grown on Si(111) by molecular beam epitaxy. Appl Phys Lett 101, 043115.
Werner, F., Limbach, F., Carsten, M., Denker, C., Malindretos, J. & Rizzi, A. (2009). Electrical conductivity of InN nanowires and the influence of the native indium oxide formed at their surface. Nano Lett 9, 15671571.
Zhao, S., Fathololoumi, S., Bevan, K.H., Liu, D.P., Kibria, M.G., Li, Q., Wang, G.T., Guo, H. & Mi, Z. (2012). Tuning the surface charge properties of epitaxial InN nanowires. Nano Lett 12, 28772882.
Zhao, S., Salehzadeh, O., Alagha, S., Kavanagh, K.L., Watkins, S.P. & Mi, Z. (2013). Probing the electrical transport properties of intrinsic InN nanowires. Appl Phys Lett 102, 073102.
Zheng, C., Wong-Leung, J., Gao, Q., Tan, H.H., Jagadish, C. & Etheridge, J. (2013). Polarity-driven 3-fold symmetry of GaAs/AlGaAs core multishell nanowires. Nano Lett 13, 37423748.


Related content

Powered by UNSILO

Investigation of III–V Nanowires by Plan-View Transmission Electron Microscopy: InN Case Study

  • Esperanza Luna (a1), Javier Grandal (a1) (a2), Eva Gallardo (a1) (a3), José M. Calleja (a3), Miguel Á. Sánchez-García (a2), Enrique Calleja (a2) and Achim Trampert (a1)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.