Skip to main content Accessibility help
×
Home

Investigation of Electron Momentum Density in Carbon Nanotubes Using Transmission Electron Microscopy

  • Zhenbao Feng (a1), Hefu Li (a1), Zongliang Wang (a1), Xiaoyan Zhang (a1), Hengshuai Li (a2), Haiquan Hu (a1) and Dangsheng Su (a3)...

Abstract

Valence Compton profiles (CPs) of multiwall (MWCNTs) and single-wall carbon nanotubes (SWCNTs) were obtained by recording electron energy-loss spectra at large momentum transfer in the transmission electron microscope, a technique known as electron Compton scattering from solids (ECOSS). The experimental MWCNT/SWCNT results were compared with that of graphite. Differences between the valence CPs of MWCNTs and SWCNTs were observed, and the SWCNT CPs indicate a greater delocalization of the ground-state charge density compared to graphite. The results clearly demonstrate the feasibility and potential of the ECOSS technique as a complementary tool for studying the electronic structure of materials with nanoscale spatial resolution.

Copyright

Corresponding author

*Author for correspondence: Zhenbao Feng, E-mail: fengzhenbao@lcu.edu.cn

References

Hide All
Brydson, R (2001). Electron Energy Loss Spectroscopy, 1st ed. Oxford, UK: Bios, Section 3.5.
Castrucci, P, Scarselli, M, Crescenzi, M, Khakani, MA & Rosei, F (2010). Probing the electronic structure of carbon nanotubes by nanoscale spectroscopy. Nanoscale 2, 16111625.
Cooper, M & Leake, JA (1967). The Compton profiles of graphite and diamond. Phil Mag 15, 12011212.
Cooper, MJ (1985). Compton-scattering and electron momentum determination. Rep Prog Phys 48, 415481.
Cooper, MJ, Mijnarends, PE, Shiotani, N, Sakai, N & Bansil, A (2004). X-Ray Compton Scattering. New York: Oxford University Press.
Dresselhaus, MS, Dresselhaus, G & Avouris, P (2007). Carbon Nanotubes: Synthesis, Structure, Properties and Applications. Berlin: Springer-Verlag.
Eatemadi, A, Daraee, H, Karimkhanloo, H, Kouhi, M, Zarghami, N, Akbarzadeh, A, Abasi, M, Hanifehpour, Y & Joo, SW (2014). Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res Lett 9, 393.
Egerton, RF (2014). Choice of operating voltage for a transmission electron microscope. Ultramicroscopy 145, 85.
Feng, ZB, Lin, YM, Tian, CW, Hu, HQ & Su, DS (2019). Combined study of the ground and excited states in the transformation of nanodiamonds into carbon onions by electron energy-loss spectroscopy. Sci Rep 9, 3784.
Feng, ZB, Loffler, S, Eder, F, Su, DS, Meyer, JC & Schattschneider, P (2013). Combined study of the ground and unoccupied electronic states of graphite by electron energy-loss spectroscopy. J Appl Phys 114, 183716.
Feng, ZB, Sakurai, Y, Liu, JF, Su, DS & Schattschneider, P (2016). Anisotropy of electron Compton profiles of graphite investigated by electron energy-loss spectroscopy. Appl Phys Lett 108, 093108.
Feng, ZB, Yang, B, Lin, YM & Su, DS (2015). Investigation of the electron momentum density distribution of nanodiamonds by electron energy-loss spectroscopy. J Chem Phys 143, 211102.
Georgakilas, V, Perman, JA, Tucek, J & Zboril, R (2015). Broad family of carbon nanoallotropes: Classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev 115, 47444822.
Hueso, LE, Pruneda, JM, Ferrari, V, Burnell, G, Valdes-Herrera, JP, Simons, BD, Littlewood, PB, Artacho, E, Fert, A & Mathur, ND (2007). Transformation of spin information into large electrical signals using carbon nanotubes. Nature 445, 410413.
Jonas, P & Schattschneider, P (1993). The experimental conditions for Compton scattering in the electron microscope. J Phys: Condens Matter 5, 71737188.
Manninen, S (2000). Compton scattering: present status and future. J Phys Chem Solids 61, 335340.
Manson, ST (1972). Inelastic collisions of fast charged-particles with atoms – ionization of aluminum L shell. Phys Rev A 6, 1013.
Matsuda, K, Nagao, T, Kajihara, Y, Inui, M, Tamura, K, Nakamura, J, Kimura, K, Yao, M, Itou, M, Sakurai, Y & Hiraoka, N (2013). Electron momentum density in liquid silicon. Phys Rev B 88, 115125.
Metz, C, Tschentscher, T, Suortti, P, Kheifets, AS, Lun, DR, Sattler, T, Schneider, JR & Bell, F (1999). Three-dimensional electron momentum densities of graphite and fullerene: a comparison. J Phys: Condens Matter 11, 39333942.
Meyer, JC, Eder, F, Kurasch, S, Skakalova, V, Kotakoski, J, Park, HJ, Roth, S, Chuvilin, A, Eyhusen, S, Benner, G, Krasheninnikov, AV & Kaiser, U (2012). Accurate measurement of electron beam induced displacement cross sections for single-layer graphene. Phys Rev Lett 108, 196102.
Mishra, MC, Kumar, R, Sharma, G, Vijay, YK & Sharma, BK (2011). Size dependent electron momentum density distribution in ZnS. Physica B 406, 43074311.
Moscovici, J, Loupias, G, Rabii, S, Erwin, S, Rassat, A & Fabre, C (1995). Compton profiles and electronic density in C60. Europhys Lett 31, 8793.
Okada, JT, Sit, PHL, Watanabe, Y, Barbiellini, B, Ishikawa, T, Wang, YJ, Itou, M, Sakurai, Y, Bansil, A, Ishikawa, R, Hamaishi, M, Paradis, PF, Kimura, K, Ishikawa, T & Nanao, S (2015). Visualizing the mixed bonding properties of liquid boron with high-resolution X-ray Compton scattering. Phys Rev Lett 114, 177401.
Okada, JT, Sit, PHL, Watanabe, Y, Wang, YJ, Barbiellini, B, Ishikawa, T, Itou, M, Sakurai, Y, Bansil, A, Ishikawa, R, Hamaishi, M, Masaki, T, Paradis, PF, Kimura, K, Ishikawa, T & Nanao, S (2012). Persistence of covalent bonding in liquid silicon probed by inelastic X-ray scattering. Phys Rev Lett 108, 067402.
Reed, WA, Eisenberger, P, Pandey, KC & Snyder, LC (1974). Electron momentum distributions in graphite and diamond and carbon-carbon bonding. Phys Rev B 10, 15071515.
Reiter, GF, Deb, A, Sakurai, Y, Itou, M, Krishnan, VG & Paddison, SJ (2013). Anomalous ground state of the electrons in nanoconfined water. Phys Rev Lett 111, 036803.
Sato, Y & Terauchi, M (2014). High-energy resolution electron energy-loss spectroscopy study of interband transitions characteristic to single-walled carbon nanotubes. Microsc Microanal 20, 807814.
Schattschneider, P & Exner, A (1995). Progress in electron Compton scattering. Ultramicroscopy 59, 241253.
Schattschneider, P, Jonas, P & Mandl, M (1991). Electron Compton-scattering on solids-a feasibility experiment on a peels system. Microsc Microanal Microstruct 2, 367375.
Senga, R, Pichler, T, Yomogida, Y, Tanaka, T, Kataura, H & Suenaga, K (2018). Direct proof of a defect-modulated gap transition in semiconducting nanotubes. Nano Lett 18, 39203925.
Sharma, G, Joshi, KB, Mishra, MC, Shrivastava, S, Vijay, YK & Sharma, BK (2011). Electron momentum density in multiwall carbon nanotubes. Physica E 43, 10841086.
Su, DS, Jonas, P & Schattschneider, P (1992). The multiple-scattering problem in electron Compton scattering on solids. Philos Mag B 66, 405418.
Su, DS & Schattschneider, P (1992). Deconvolution of angle-resolved electron energy-loss spectra. Philos Mag A 65, 11271140.
Suzuki, K, Barbiellini, B, Orikasa, Y, Go, N, Sakurai, H, Kaprzyk, S, Itou, M, Yamamoto, K, Uchimoto, Y, Wang, YJ, Hafiz, H, Bansil, A & Sakurai, Y (2015). Extracting the redox orbitals in Li battery materials with high-resolution X-ray compton scattering spectroscopy. Phys Rev Lett 114, 087401.
Williams, BG (1977). Compton Scattering. New York: McGraw-Hill.
Williams, BG & Bourdillon, AJ (1982). Localized Compton scattering using energy-loss spectroscopy. J Phys C Solid State 15, 68816890.
Williams, BG, Parkinson, GM, Eckhardt, CJ, Thomas, JM & Sparrow, T (1981). A new approach to the measurement of the momentum densities in solids using an electron microscope. Chem Phys Lett 78, 434438.
Williams, BG, Sparrow, TG & Egerton, RF (1984). Electron Compton scattering from solids. Proc R Soc Lond A 393, 409422.
Williams, BG & Thomas, JM (1983). Compton scattering as a technique for the study of solids. Intl Rev Phys Chem 3, 3982.
Zeynalov, E, Allen, NS, Salmanova, N & Vishnyakov, V (2019). Carbon nanotubes catalysis in liquid-phase aerobic oxidation of hydrocarbons: Influence of nanotube impurities. J Phys Chem Solids 127, 245251.

Keywords

Related content

Powered by UNSILO
Type Description Title
WORD
Supplementary materials

Feng et al. supplementary material
Feng et al. supplementary material

 Word (250 KB)
250 KB

Investigation of Electron Momentum Density in Carbon Nanotubes Using Transmission Electron Microscopy

  • Zhenbao Feng (a1), Hefu Li (a1), Zongliang Wang (a1), Xiaoyan Zhang (a1), Hengshuai Li (a2), Haiquan Hu (a1) and Dangsheng Su (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.