Skip to main content Accessibility help
×
Home

Investigating Processes of Nanocrystal Formation and Transformation via Liquid Cell TEM

  • Michael H. Nielsen (a1), Dongsheng Li (a2), Hengzhong Zhang (a3), Shaul Aloni (a4), T. Yong-Jin Han (a5), Cathrine Frandsen (a6), Jong Seto (a7) (a8), Jillian F. Banfield (a3), Helmut Cölfen (a7) and James J. De Yoreo (a2)...

Abstract

Recent ex situ observations of crystallization in both natural and synthetic systems indicate that the classical models of nucleation and growth are inaccurate. However, in situ observations that can provide direct evidence for alternative models have been lacking due to the limited temporal and spatial resolution of experimental techniques that can observe dynamic processes in a bulk solution. Here we report results from liquid cell transmission electron microscopy studies of nucleation and growth of Au, CaCO3, and iron oxide nanoparticles. We show how these in situ data can be used to obtain direct evidence for the mechanisms underlying nanoparticle crystallization as well as dynamic information that provide constraints on important energetic parameters not available through ex situ methods.

Copyright

Corresponding author

* Corresponding author. james.deyoreo@pnnl.gov

References

Hide All
Banfield, J.F., Welch, S.A., Zhang, H.Z., Ebert, T.T. & Penn, R.L. (2000). Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289(5480), 751754.
Baumgartner, J., Dey, A., Bomans, P.H.H., Le Coadou, C., Fratzl, P., Sommerdijk, N. & Faivre, D. (2013). Nucleation and growth of magnetite from solution. Nat Mater 12(4), 310314.
Bewernitz, M.A., Gebauer, D., Long, J., Cölfen, H. & Gower, L.B. (2012). A metastable liquid precursor phase of calcium carbonate and its interactions with polyaspartate. Faraday Discuss 159, 291312.
Burton, W.K., Cabrera, N. & Frank, F.C. (1951). The growth of crystals and the equilibrium structure of their surfaces. Phil Trans R Soc A 243(866), 299358.
Chen, Q., Smith, J.M., Park, J., Kim, K., HO, D., Rasool, H.I., Zettl, A. & Alivisatos, A.P. (2013). 3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy Nano Lett 13, 45564561.
Cho, K.S., Talapin, D.V., Gaschler, W. & Murray, C.B. (2005). Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J Am Chem Soc 127(19), 71407147.
Cölfen, H. & Antonietti, M. (2005). Mesocrystals: Inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew Chem-Int Edit 44(35), 55765591.
Cölfen, H. & Antonietti, M. (2008). Mesocrystals and Non-Classical Crystallization. San Francisco, USA: John Wiley and Sons.
de Yoreo, J.J. (2013). Nucleation: More than one pathway. Nat Mater 12, 284285.
de Yoreo, J.J. & Vekilov, P.G. (2003). Principles of crystal nucleation and growth. In Biomineralization, Dove, P.M., DeYoreo, J.J. & Weiner, S. (Eds.), pp. 5793. Washington: Mineralogical Soc America.
de Yoreo, J.J., Waychunas, G.A., Jun, Y.-S. & Fernandez-Martinez, A. (In press). In situ investigations of carbonate nucleation on mineral and organic surfaces. In Geochemistry of Geological CO 2 Sequestration , Bourg, I., Steefel, C. & Navrotsky, A. (Eds.), pp. 229257. Washington: Mineralogical Society America.
Dey, A., Bomans, P.H.H., Muller, F.A., Will, J., Frederik, P.M., de With, G. & Sommerdijk, N. (2010). The role of prenucleation clusters in surface-induced calcium phosphate crystallization. Nat Mater 9(12), 10101014.
Evans, J.E., Jungjohann, K.L., Browning, N.D. & Arslan, I. (2011). Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett 11, 28092813.
Faatz, M., Grohn, F. & Wegner, G. (2004). Amorphous calcium carbonate: Synthesis and potential intermediate in biomineralization. Adv Mater 16(12), 9961000.
Frandsen, C., Legg, B.A., Comolli, L.R., Zhang, H., Gilbert, B., Johnson, E. & Banfield, J.F. (2014). Aggregation-induced growth and transformation of β-FeOOH nanorods to micron-sized α-Fe2O3 spindles. Cryst Eng Comm 16, 14511458.
Gebauer, D. & Cölfen, H. (2011). Prenucleation clusters and non-classical nucleation. Nano Today 6(6), 564584.
Gebauer, D., Volkel, A. & Cölfen, H. (2008). Stable prenucleation calcium carbonate clusters. Science 322(5909), 18191822.
Gibbs, J.W. (1876). On the equilibrium of heterogeneous substances. Trans Connect Acad Sci 3, 108248.
Gibbs, J.W. (1878). On the equilibrium of heterogeneous substances. Trans Connect Acad Sci 16, 343524.
Habraken, W., Tao, J.H., Brylka, L.J., Friedrich, H., Bertinetti, L., Schenk, A.S., Verch, A., Dmitrovic, V., Bomans, P.H.H., Frederik, P.M., Laven, J., van der Schoot, P., Aichmayer, B., de With, G., Deyoreo, J.J. & Sommerdijk, N. (2013). Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate. Nat Commun, 4, Article no. 1507.
Hackney, S.A., Biancaniello, F.S., Yoon, D.N. & Handwerker, C.A. (1986). Observations on crystal defects associated with diffusion induced grain boundary migration in Cu-Zn. Scripta Metallurgica 20(6), 937942.
Joesten, R.L. (1991). Kinetics of coarsening and diffusion-controlled material growth. In Contact Metamorphism, Reviews in Mineralogy vol. 26, pp. 507582 (Eds.), pp. 507582. Washington, DC: Mineralogy Society of America.
Jungjohann, K.L., Bliznakov, S., Sutter, P.W., Stach, E.A. & Sutter, E.A. (2013). In situ liquid cell electron microscopy of the solution growth of Au−Pd core−shell nanostructures. Nano Lett 13, 29642970.
Kashchiev, D. (1999). Nucleation: Basic Theory with Applications. Oxford, UK: Butterworths-Heinemann.
Killian, C.E., Metzler, R.A., Gong, Y.U.T., Olson, I.C., Aizenberg, J., Politi, Y., WILT, F.H., Scholl, A., Young, A., Doran, A., Kunz, M., Tamura, N., Coppersmith, S.N. & Gilbert, P. (2009). Mechanism of calcite co-orientation in the sea urchin tooth. J Am Chem Soc 131(51), 1840418409.
Li, D.S., Nielsen, M.H., Lee, J.R.I., Frandsen, C., Banfield, J.F. & de Yoreo, J.J. (2012). Direction-specific interactions control crystal growth by oriented attachment. Science 336(6084), 10141018.
Liao, H.G., Cui, L.K., Whitelam, S. & Zheng, H.M. (2012). Real-time imaging of Pt3Fe nanorod growth in solution. Science 336(6084), 10111014.
Liu, Y., Tai, K. & Dillon, S.J. (2013). Growth kinetics and morphological evolution of ZnO precipitated solution. Chem Mater 25, 29272933.
Mann, S. (2001). Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry. Oxford, UK: Oxford University Press.
Nielsen, M.H., Lee, J.R.I., Hu, Q.N., Han, T.Y.J. & de Yoreo, J.J. (2012). Structural evolution, formation pathways and energetic controls during template-directed nucleation of CaCO3. Faraday Discuss 159, 105121.
Ocana, M., Morales, M.P. & Serna, C.J. (1995). The growth-mechanism of alpha-fe2o3 ellipsoidal particles in solution. J Colloid Interface Sci 171(1), 8591.
Parent, L.R., Robinson, D.B., Woehl, T.J., Ristenpart, W.D., Evans, J.E., Browning, N.D. & Arslan, I. (2012). Direct in situ observation of nanoparticle synthesis in a liquid crystal surfactant template. ACS Nano 6(4), 35893596.
Passchier, C.W. & Trouw, R.A.J. (1998). Microtectonics. Wurzburg. Springer.
Penn, R.L. & Banfield, J.F. (1998 a). Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science 281, 969971.
Penn, R.L. & Banfield, J.F. (1998 b). Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: Insights from nanocrystalline TiO2. Mineralogist 83, 10771082.
Penn, R.L., Zhu, C., Xu, H. & Veblen, D. (2001). Iron oxide coatings on sand grains from the Atlantic coastal plain: High-resolution transmission electron microscopy characterization. Geology 29, 843846.
Politi, Y., Arad, T., Klein, E., Weiner, S. & Addadi, L. (2004). Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science 306(5699), 11611164.
Pouget, E.M., Bomans, P.H.H., Goos, J.A.C.M., Frederik, P.M., de With, G. & Sommerdijk, N.A.J.M. (2009). The initial stages of template-controlled caco3 formation revealed by cryo-TEM. Science 323(5920), 14551458.
Quigley, D., Freeman, C.L., Harding, J.H. & Rodger, P.M. (2011). Sampling the structure of calcium carbonate nanoparticles with metadynamics. J Chem Phys 134(4), 044703.
Radisic, A., Ross, F.M. & Searson, P.C. (2006 a). In situ study of the growth kinetics of individual island electrodeposition of copper. J Phys Chem B 110(15), 78627868.
Radisic, A., Vereecken, P.M., Hannon, J.B., Searson, P.C. & Ross, F.M. (2006 b). Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data. Nano Letters 6(2), 238242.
Raiteri, P. & Gale, J.D. (2011). Water is the key to nonclassical nucleation of amorphous calcium carbonate. J Am Chem Soc 132(49), 1762317634.
van Driessche, A.E.S., Benning, L.G., Rodriguez-blanco, J.D., Ossorio, M., Bots, P. & Garcia-Ruiz, J.M. (2012). The role and implications of bassanite as a stable precursor phase to gypsum precipitation. Science 336(6077), 6972.
Wallace, A.F., Hedges, L.O., Fernandez-Martinez, A., Raiteri, P., Gale, J.D., Waychunas, G.A., Whitelam, S., Banfield, J.F. & de Yoreo, J.J. (2013). Microscopic evidence for liquid-liquid separation in supersaturated CaCO3 solutions. Science 341(6148), 885889.
Williamson, M.J., Tromp, R.M., Vereecken, P.M., Hull, R. & Ross, F.M. (2003). Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat Mater 2(8), 532536.
Woehl, T.J., Evans, J.E., Arslan, I., Ristenpart, W.D. & Browning, N.D. (2012). Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth. ACS Nano 6(10), 85998610.
Wolf, S.E., Leiterer, J., Kappl, M., Emmerling, F. & Tremel, W. (2008). Early homogenous amorphous precursor stages of calcium carbonate and subsequent crystal growth in levitated droplets. J Am Chem Soc 130(37), 1234212347.
Xin, H.L. & Zheng, H. (2012). In situ observation of oscillatory growth of bismuth nanoparticles. Nano Lett 12, 14701474.
Xu, An-Wu, Antonietti, Markus, Yu, Shu-Hong, Cölfen, H. (2008). Polymer-mediated mineralization and self-similar mesoscale-organized calcium carbonate with unusual superstructures. Adv Mater 20(7), 1333.
Yadong, Y. & Alivisatos, P. (2005). Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 437(7059), 664670.
Yuk, J.M., Park, J., Ercius, P., Kim, K., Hellebusch, D.J., Crommie, M.F., Lee, J.Y., Zettl, A. & Alivisatos, A.P. (2012). High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336, 6164.
Zhang, H.Z. & Banfield, J.F. (2012). Energy calculations predict nanoparticle attachment orientations and asymmetric crystal formation. J Phys Chem Lett 3(19), 28822886.
Zhang, H. & Banfield, J.F. (2013). Interatomic Coulombic interactions as the driving force for oriented attachment. Cryst Eng Comm, 16, 15681578.
Zhang, J., Huang, F. & Lin, Z. (2010). Progress of nanocrystalline growth kinetics based on oriented attachment. Nanoscale 2(1), 1834.
Zheng, H., Smith, R.K., Jun, Y.-W., Kisielowski, C., Dahmen, U. & Alivisatos, A.P. (2009). Observation of single colloidal platinum nanocrystal growth trajectories. Science 324, 13091312.

Keywords

Type Description Title
WORD
Supplementary materials

Nielsen Supplementary Material
Supplementary Material

 Word (7.0 MB)
7.0 MB
VIDEO
Supplementary materials

Nielsen Supplementary Material
Movie 1

 Video (12.8 MB)
12.8 MB
VIDEO
Supplementary materials

Nielsen Supplementary Material
Movie 2

 Video (14.3 MB)
14.3 MB
VIDEO
Supplementary materials

Nielsen Supplementary Material
Movie 3

 Video (6.0 MB)
6.0 MB
VIDEO
Supplementary materials

Nielsen Supplementary Material
Movie 4

 Video (12.3 MB)
12.3 MB
VIDEO
Supplementary materials

Nielsen Supplementary Material
Movie 5

 Video (13.8 MB)
13.8 MB

Investigating Processes of Nanocrystal Formation and Transformation via Liquid Cell TEM

  • Michael H. Nielsen (a1), Dongsheng Li (a2), Hengzhong Zhang (a3), Shaul Aloni (a4), T. Yong-Jin Han (a5), Cathrine Frandsen (a6), Jong Seto (a7) (a8), Jillian F. Banfield (a3), Helmut Cölfen (a7) and James J. De Yoreo (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed