Skip to main content Accessibility help

In-Situ Electrochemical Transmission Electron Microscopy for Battery Research

  • B. Layla Mehdi (a1), Meng Gu (a2), Lucas R. Parent (a1), Wu Xu (a3), Eduard N. Nasybulin (a3), Xilin Chen (a3), Raymond R. Unocic (a4), Pinghong Xu (a5), David A. Welch (a5), Patricia Abellan (a1), Ji-Guang Zhang (a3), Jun Liu (a3), Chong-Min Wang (a2), Ilke Arslan (a1), James Evans (a2) and Nigel D. Browning (a1)...


The recent development of in-situ liquid stages for (scanning) transmission electron microscopes now makes it possible for us to study the details of electrochemical processes under operando conditions. As electrochemical processes are complex, care must be taken to calibrate the system before any in-situ/operando observations. In addition, as the electron beam can cause effects that look similar to electrochemical processes at the electrolyte/electrode interface, an understanding of the role of the electron beam in modifying the operando observations must also be understood. In this paper we describe the design, assembly, and operation of an in-situ electrochemical cell, paying particular attention to the method for controlling and quantifying the experimental parameters. The use of this system is then demonstrated for the lithiation/delithiation of silicon nanowires.


Corresponding author

* Corresponding author.


Hide All
Aurbach, D., Gofer, Y., Ben-Zion, M. & Aped, P. (1992). The behavior of lithium electrodes in propylene and ethylene carbonate: The major factors that influence Li cycling efficiency. J Electroanal Chem 339, 451471.
Baeulieu, L.Y., Eberman, K.W., Turner, R.L., Krause, L.J. & Dahn, J.R. (2001). Colossal reversible volume change in lithium alloys. Electrochem Solid-State Lett 4, A137A140.
Beaulieu, L.Y., Hatchard, T.D., Bonakdarpour, A., Fleischauer, M.D. & Dahn, J.R. (2003). Reacton of Li with alloy thin films studied by in situ AFM. J Electrochem Soc 150, A1457A1464.
Bhattacharya, R., Key, B., Chen, H.L., Best, A.S., Hollenkamp, A.F. & Grey, C.P. (2010). In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nat Mater 9, 504510.
Bridges, C.A., Sun, X.-G., Zhao, J., Paranthaman, M.P. & Dai, S. (2012). In situ observation of solid electrolyte interphase formation in ordered mesoporous hard carbon by small-angle neutron scattering. J Phys Chem C 116, 77017711.
Chao, S.C., Yen, Y.C., Song, Y.F., Chen, Y.M., Wu, H.C. & Wu, N.L. (2010). A study on the interior microsctructures of working Sn particle electrode of Li-ion batteries by in situ X-ray transmission microscopy. Electrochem Commun 12, 234237.
Chiu, K.F., Lin, K.M., Lin, H.C., Hsu, C.H., Chen, C.C. & Shieh, D.T. (2008). Electrochemical performances of Cu nanodots modified amorphous Si thin films for lithium–ion batteries. J Electrochem Soc 155(9), A623A627.
Chen, D., Indris, S., Schulz, M., Gamer, B. & Monig, R. (2011 a). In situ scanning electron microscopy on lithium-ion battery electrodes using an ionic liquid. J Power Sources 196, 63826387.
Chen, H.X., Xiao, Y., Wang, L. & Yang, Y. (2011b). Silicon nanowires coated with copper layer as anode materials for lithium-ion batteries. J Power Sources 196, 66576662.
De Jonge, N. & Ross, F.M. (2011). Electron microscopy of specimens in liquid. Nat Nanotechnol 6, 695704.
Ding, F., Xu, W., Gaff, G.L., Zhang, J., Sushko, M.L., Chen, X., Shao, Y., Engelhard, M.H., Nie, Z., Xiao, J., Liu, X., Sushko, P.V., Liu, J. & Zhang, J.G. (2013). Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J Am Chem Soc 135, 44504456.
Evans, J.E., Jungjohann, K.L., Browning, N.D. & Arslan, I. (2011). Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett 11, 28092813.
Fu, L.J., Liua, H., Li, C., Wua, Y.P., Rahmb, E., Holzeb, R. & Wu, H.Q. (2006). Surface modifications of electrode materials for lithium ion batteries. Solid State Sci 8, 113128.
Gu, M., Parent, L.R., Mehdi, B.L., Unocic, R.R., McDowell, M.T., Sacci, R.L., Xu, W., Connell, J.G., Xu, P., Abellan, P., Chen, X., Zhang, Y., Perea, D.E., Evans, J.E., Lauhon, L.J., Zhang, J.-G., Liu, J., Browning, N.D., Cui, Y., Arslen, I. & Wang, C.M. (2013). Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation of Si nanowire battery anode. Nano Lett 13, 61066112.
Hardwick, L.J., Ruch, P.W., Hahn, M., Scheifele, W., Kotz, R. & Novak, P. (2008). In situ Raman spectroscopy of insertion electrodes for lithium-ion batteries and supercapacitors: First cycle effects. J. Phys Chem Solids 69, 12321237.
Hatchard, T.D. & Dahn, J.R. (2004). In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J Electrochem Soc 151, A838A842.
Huang, J.Y., Zhong, L., Wang, C.M., Sullivan, J.P., Xu, W., Zhang, L.Q., Mao, S.X., Hudak, N.S., Liu, X.H., Subramanian, A., Fan, H.Y., Qi, L., Kushima, A. & Li, J. (2010). In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 15151520.
Key, B., Bhattacharya, R., Morcrette, M., Seznec, V., Tarascon, J.M. & Grey, C.P. (2009). Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. J Am Chem Soc 131, 92399249.
Key, B., Morcrette, M., Tarascon, J.M. & Grey, C.P. (2011). Pair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: Understanding the (de)lithiation mechanisms. J Am Chem Soc 133, 503512.
Kanamura, K., Shiraishi, S. & Takehara, Z. (1998). Elechtrochemical deposition of lithium metal in nonaqueous electrolyte containing (C2H5)4NF(HF)4 additive. J Fluorine Chem 2(87), 235243.
Kasavajjula, U., Wang, C.S. & Appleby, A.J. (2007). Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sources 163, 10031039.
Lercher, D., Beattie, S., Morcrette, M., Edstroem, K., Jumas, J.C. & Tarascon, J.M. (2007). Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries. J Mater Chem 17, 37593772.
Li, J. & Dahn, J.R. (2007). An in situ X-ray diffraction study of the reaction of Li with crystalline Si. J Electrochem Soc 154, A156A161.
Liu, X.H., Huang, S., Picraux, S.T., Li, J., Zhu, T. & Huang, J.Y. (2011). Reversible nanopore formation in Ge nanowires during lithiation-delithiation cycling: An in situ TEM study. Nano Lett 11, 39913997.
Liu, X.H., Liu, Y., Kushima, A., Zhang, S., Zhu, T., Li, J. & Huang, J.Y. (2012). In situ experiments of electrochemical lithiation and delithiation of individual nanostructures. Adv Energy Mater 2, 722741.
Long, B.R., Chan, M.K.Y., Greeley, J.P. & Gewirth, A.A. (2011). Dopant modulated Li insertion in Si for battery anodes: Theory and experiment. J Phys Chem C 115, 1891618921.
Mcdowell, M.T. & Cui, Y. (2011). Single nanostructure electrochemical devices for studying electronic properties and structural changes in lithiated Si nanowires. Adv Energy Mater 1, 894900.
McDowell, M.T., Woo, S.L., Wang, C. & Cui, Y. (2012 a). The effect of metallic coatings and crystallinity on the volume expansion of silicon during electrochemical lithiation/delithiation. Nano Energy 1(3), 401410.
McDowell, M.T., Ryu, I., Lee, S.W., Wang, C., Nix, W.D. & Cui, Y. (2012 b). Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy. Adv Mater 24(45), 60346041.
Nishikawa, K., Fukunaka, Y., Sakka, T., Ogata, Y.H. & Selman, J.R. (2007). Measurement of concentration profiles during electrodeposition of Li metal from LiPF6-PC electrolyte solution. The role of SEI dynamics. J Electrochem Soc 154(10), A943A948.
Obrovac, M.N. & Christensen, L. (2004). Structural changes in silicon anodes during lithium insertion/extraction. Electrochem Solid-State Lett 7, A93A96.
Orsini, F., Du Pasquier, A., Beaudoin, B., Tarascon, J.M., Trentin, M., Langenhuizen, N., De Beer, E. & Notten, P. (1998). In-situ scanning electron microscopy (SEM) observation of interfaced within plastic lithium batteries. J Power Sources 76, 1929.
Osaka, T., Momma, T., Matsumoto, Y. & Uchido, Y. (1997). Surface characterization of electrodeposited lithium anode with enhanced cycleability obtained by CO2 addition. J Electrochem Soc 144, 17091713.
Radisic, A., Philippe, M., Vereecken, P.M., Hannon, J.B., Searson, P.C. & Ross, F.M. (2006). The morphology and nucleation kinetics of copper islands during electrodeposition. Nano Lett 6(2), 238242.
Rosso, M., Brissot, C., Teyssot, A., Dolle, M., Sannier, L., Tarascon, J.M., Bouchetc, R. & Lascaud, S. (2006). Dendrite short-circuit and fuse effect on Li/polymer/Li cells. Electrochim Acta 51, 53345340.
Sacci, R.L., Dudney, N.J., More, K.L., Parent, L.R., Arslan, I., Browning, N.D. & Unocic, R.R. (2014). Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in-situ electrochemical transmission electron microscopy. Chem Commun 50, 21042107.
Sethuraman Kowolik, K. & Srinivasan, V. (2011). Increased cycling efficiency and rate capability of copper-coated silicon anodes in lithium-ion batteries. J Power Sources 196, 393398.
Unocic, R.R., Sacci, R.L., Brown, G.M., Veith, G.M., Dudney, N.J., More, K.L., Walden, F.S., Gardiner, D.S., Damiano, D. & Nackashi, D.P. (2014). Quantitative electrochemical measurements using in situ ec-S/TEM devices. Microsc Microanal in this issue.
Wang, C.M., Xu, W., Liu, J., Choi, D.W., Arey, B., Saraf, L.V., Zhang, J.G., Yang, Z.G., Thevuthasan, S., Baer, D.R., Salmon, N. (2010). In situ transmission electron microscopy and spectroscopy studies of interfaces in Li ion batteries: Challenges and opportunities. J Mater Res 25, 15411547.
White, E.R., Singer, S.B., Augustyn, V., Hubbard, W.A., Mecklenburg, M., Dunn, B. & Regan, B.C. (2012). In situ transmission electron microscopy of lead dendrites and lead ions in aqueous solution. ACS Nano 6(7), 63086317.
Williamson, M.J., Tromp, R.M., Vereecken, P.M., Hull, R. & Ross, F.M. (2003). Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nature Mater 2, 532536.
Woehl, J.T., Evans, J.E., Arslan, I., Ristenpart, W.D. & Browning, N.D. (2012). Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth. ACS Nano 6(10), 85998610.
Woehl, J.T., Jungjohann, K.L., Evans, J.E., Arslan, I., Ristenpart, W.D. & Browning, N.D. (2013). Experimental procedures to mitigate electron beam induced artifacts during in situ fluid imaging of nanomaterials. Ultramicroscopy 127, 5363.
Xu, K. (2004). Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104, 43034417.
Yang, X., Wen, Z., Zhu, X. & Huang, S. (2005). Electrodeposition of lithium film under dynamic conditions and its application in all-solid-state rechargeable lithium battery. Solid State Ionics 176, 1051 1055.
Yu, X., Wang, Q., Zhou, Y., Li, H., Yang, X.-Q., Nam, K.-W., Ehrlich, S.N., Khalid, S. & Meng, Y.S. (2012). High rate delithiation behavior of LiFePO4 studied by quick X-ray absorption spectroscopy. Chem Commun 48, 1153711539.


Related content

Powered by UNSILO
Type Description Title
Supplementary materials

Mehdi Supplementary Material
Movie 1

 Video (78.4 MB)
78.4 MB
Supplementary materials

Mehdi Supplementary Material
Movie 2

 Video (31.3 MB)
31.3 MB

In-Situ Electrochemical Transmission Electron Microscopy for Battery Research

  • B. Layla Mehdi (a1), Meng Gu (a2), Lucas R. Parent (a1), Wu Xu (a3), Eduard N. Nasybulin (a3), Xilin Chen (a3), Raymond R. Unocic (a4), Pinghong Xu (a5), David A. Welch (a5), Patricia Abellan (a1), Ji-Guang Zhang (a3), Jun Liu (a3), Chong-Min Wang (a2), Ilke Arslan (a1), James Evans (a2) and Nigel D. Browning (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.