Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-28T13:52:12.981Z Has data issue: false hasContentIssue false

In Situ Transmission Electron Microscopy of Ionic Conductivity and Reaction Mechanisms in Ultrathin Solid Oxide Fuel Cells

Published online by Cambridge University Press:  10 November 2014

Amir H. Tavabi*
Affiliation:
Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany
Shigeo Arai
Affiliation:
EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
Shunsuke Muto
Affiliation:
EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
Takayoshi Tanji
Affiliation:
EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
Rafal E. Dunin-Borkowski
Affiliation:
Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany
*
*Corresponding author. a.tavabi@fz-juelich.de
Get access

Abstract

Solid oxide fuel cells (SOFCs) are promising candidates for use in alternative energy technologies. A full understanding of the reaction mechanisms in these dynamic material systems is required to optimize device performance and overcome present limitations. Here, we show that in situ transmission electron microscopy (TEM) can be used to study redox reactions and ionic conductivity in SOFCs in a gas environment at elevated temperature. We examine model ultrathin half and complete cells in two environmental TEMs using off-axis electron holography and electron energy-loss spectroscopy. Our results from the model cells provide insight into the essential phenomena that are important for the operation of commercial devices. Changes in the activities of dopant cations in the solid electrolyte are detected during oxygen anion conduction, demonstrating the key role of dopants in electrolyte architecture in SOFCs.

Type
Materials Applications
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adhikari, R., Das, A.K., Karmakar, D. & Ghatak, J. (2010). Gd-doped SnO2 nanoparticles: Structure and magnetism. J Magn Magn Mater 322, 36313637.CrossRefGoogle Scholar
Arai, S., Muto, S., Murai, J., Sasaki, T., Ukyo, Y., Kuroda, K. & Saka, S. (2004). Valence change of cations in ceria-zirconia solid solution associated with redox reactions studied with electron energy-loss spectroscopy. Mater Trans 45, 29512955.CrossRefGoogle Scholar
Crozier, P.A., Wang, R. & Sharma, R. (2008). In situ environmental TEM studies of dynamic changes in cerium-based oxide nanoparticles during redox processes. Ultramicroscopy 108, 14321440.CrossRefGoogle ScholarPubMed
Dunin-Borkowski, R.E., Boothroyd, C.B. & Beleggia, M. (2010). Dynamical effects in the study of supported nanocrystals using electron holography. Microsc Microanal 16(Suppl 2), 572573.CrossRefGoogle Scholar
Dunin-Borkowski, R.E., Newcomb, S.B., Kasama, T., McCartney, M.R., Weyland, M. & Midgley, P.A. (2005). Conventional and back-side focused ion beam milling for electron holography of electrostatic potentials in transistors. Ultramicroscopy 103, 6781.CrossRefGoogle ScholarPubMed
Dusastre, V. & Kilner, J.A. (1999). Optimisation of composite cathodes for intermediate temperature SOFC applications. Solid State Ionics 126, 163174.CrossRefGoogle Scholar
Gajdardziska-Josifovska, M., McCartney, M.R., de Ruijter, W.J., Smith, D.J., Weiss, J.K. & Zuo, J.M. (1993). Accurate measurements of mean inner potential of crystal wedges using digital electron holograms. Ultramicroscopy 50, 285299.CrossRefGoogle Scholar
Garvie, L.A.J. & Buseck, P.R. (1999). Determination of Ce4+/Ce3+ in electron-beam-damaged CeO2 by electron energy-loss spectroscopy. J Phys Chem Solids 66, 19431947.CrossRefGoogle Scholar
Hertz, J.L., Rothschild, A. & Tuller, H.L. (2009). Highly enhanced electrochemical performance of silicon-free platinum–yttria stabilized zirconia interfaces. J Electroceram 193, 194198.Google Scholar
Horita, T., Kishimoto, H., Yamaji, K., Brito, M.E., Xiong, Y., Yokokawa, H., Hori, Y. & Miyachi, I. (2009). Effects of impurities on the degradation and long-term stability for solid oxide fuel cells. J Power Sources 193, 194198.CrossRefGoogle Scholar
Hytch, M., Houdellier, F., Hüe, F. & Snoeck, E. (2008). Nanoscale holographic interferometry for strain measurements in electronic devices. Nature 453, 10861089.CrossRefGoogle ScholarPubMed
Izuki, M., Brito, M.E., Yamaji, K., Kishimoto, H., Cho, D.H., Shimonosono, T., Horita, T. & Yokokawa, H. (2000). Interfacial stability and cation diffusion across the LSCF/GDC interface. Acta Mater 48, 47094714.Google Scholar
Jeangros, Q., Faes, A., Wagner, J.B., Hansen, T.W., Aschauer, U., Van herle, J., Hessler-Wyser, A. & Dunin-Borkowski, R.E. (2010). In situ redox cycle of a nickel–YSZ fuel cell anode in an environmental transmission electron microscope. Acta Mater 58, 45784589.CrossRefGoogle Scholar
Joo, J.H. & Choi, G.M. (2007). Electrical conductivity of thin film ceria grown by pulsed laser deposition. J Eur Ceram Soc 27, 42734277.CrossRefGoogle Scholar
Kim, Y.B., Shim, J.Y., Gür, T.M. & Prinz, F.B. (2011). Epitaxial and polycrystalline gadolinia-doped ceria cathode interlayers for low temperature solid oxide fuel cells. J Electrochem Soc 158, B1453B1457.CrossRefGoogle Scholar
Landheer, D., Gupta, J.A., Sproule, G.I., McCaffrey, J.P., Graham, M.J., Yang, K.C., Lu, Z.H. & Lennard, W.N. (2001). Characterization of Gd2O3 films deposited on Si(100) by electron-beam evaporation. J Electrochem Soc 148, G29G35.CrossRefGoogle Scholar
Lichte, H. & Lehmann, M. (2008). Electron holography—Basics and applications. Rep Prog Phys 71, 016102.CrossRefGoogle Scholar
Lichte, H., Linck, M., Geiger, D. & Lehmann, M. (2010). Aberration correction and electron holography. Microsc Microanal 16, 434440.CrossRefGoogle ScholarPubMed
Liu, L.Y. & Jiao, C. (2005). Microstructure degradation of an anode/electrolyte interface in SOFC studied by transmission electron microscopy. Solid State Ionics 176, 435442.CrossRefGoogle Scholar
Lubk, A., Wolf, D. & Lichte, H. (2010). The effect of dynamical scattering in off-axis holographic mean inner potential and inelastic mean free path measurements. Ultramicroscopy 110, 438446.CrossRefGoogle Scholar
McCartney, M.R., Dunin-Borkowski, R.E. & Smith, D.J. (2005). Off-axis electron holography. In Handbook of Microscopy of Nanotechnology, Yao. N. & Wang, Z.L. (Eds.), pp. 629652. USA: Kluwer Academic Publishers.CrossRefGoogle Scholar
Mench, M.M. (2008). Fuel Cell Engines. Hoboken, NJ: John Wiley and Sons Inc.CrossRefGoogle Scholar
Midgley, P.A. & Dunin-Borkowski, R.E. (2009). Electron tomography and holography in materials science. Nat Mater 8, 271280.CrossRefGoogle ScholarPubMed
Mitterdorfer, A. & Gauckler, L.J. (1999). Identification of the reaction mechanism of the Pt, O2(g)|yttria-stabilized zirconia system: Part I: General framework, modelling, and structural investigation. Solid State Ionics 117, 187202.CrossRefGoogle Scholar
Moritomo, H., Oura, K., Tanji, T. & Enomoto, S. (2006). New specimen holder with 4 electrodes. Proc IMC16 1154.Google Scholar
O’Hayre, R., Cha, S.W., Colella, W. & Prinz, F.B. (2009). Fuel Cell Fundamentals, 2nd ed. New York, NY: John Wiley & Sons Inc. Google Scholar
Pantteix, P.J., Julien, I., Bernache-Assollant, D. & Abelard, P. (2006). Synthesis and characterization of oxide ions conductors with the apatite structure for intermediate temperature SOFC. Mater Chem Phys 95, 313330.CrossRefGoogle Scholar
Rau, W.D., Schwander, P., Baumann, F.H., Höppner, W. & Ourmazd, A. (1999). Two-dimensional mapping of the electrostatic potential in transistors by electron holography. Phys Rev Lett 82, 26142617.CrossRefGoogle Scholar
Rez, D., Rez, P. & Grant, I. (1994). Dirac-Fock calculations of X-ray scattering factors and contributions to the mean inner potential for electron scattering. Acta Cryst A 50, 481497.CrossRefGoogle Scholar
Rodrigo, K., Heiroth, S., Lundberg, M., Bonanos, N., Mohan Kant, K., Pryds, N., Theil Kuhn, L., Esposito, V., Linderoth, S., Schou, J. & Lippert, T. (2010). Electrical characterization of gadolinia-doped ceria films grown by pulsed laser deposition. Appl Phys A 101, 601607.CrossRefGoogle Scholar
Rui, S., Roller, J., Yick, S., Zhang, X., Deces-Petit, C., Xie, Y., Maric, R. & Ghosh, D. (2007). A brief review of the ionic conductivity enhancement for selected oxide electrolytes. J Power Sources 172, 493502.Google Scholar
Sammes, N. (Ed.) (2006). Fuel Cell Technology—Researching Towards Commercialization, 1st ed. London: Springer.Google Scholar
Shao, Z. & Haile, S.M. (2004). A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431, 170173.CrossRefGoogle ScholarPubMed
Sharma, R. (2008). Observation of dynamic processes using environmental transmission or scanning transmission electron microscopy. In In-Situ Electron Microscopy at High Resolution, Banhart, F. (Ed.), pp. 1548. Singapore: World Scientific Publishing Co. Pte. Ltd.CrossRefGoogle Scholar
Sickmann, J., Formanek, P., Linck, M., Muehle, M. & Lichte, H. (2011). Imaging modes for potential mapping in semiconductor devices by electron holography with improved lateral resolution. Ultramicroscopy 111, 290302.CrossRefGoogle ScholarPubMed
Singhal, S.C. & Kendal, K. (2003). High-Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications. Oxford: Elsevier Ltd.Google Scholar
Soldati, A.L., Baque, L., Troiani, H., Cataro, C., Schreiber, A., Caneiro, A. & Serquis, A. (2011). High resolution FIB-TEM and FIB-SEM characterization of electrode/electrolyte interfaces in solid oxide fuel cells materials. Int J Hydrogen Energ 36, 91809188.CrossRefGoogle Scholar
Steele, B.C.H. (1999). Fuel-cell technology: Running on natural gas. Nature 400, 619621.CrossRefGoogle Scholar
Tanji, T., Ohno, T., Ishizuka, K. & Tonomura, A. (1994). Aberration-free image of an MgO crystal edge—An application of image restoration in electron holography. J Electron Micros 43, 318321.Google Scholar
Tavabi, A.H., Arai, S., Duchamp, M., Muto, S., Tanji, T. & Dunin-Borkowski, R.E. (2013). Electron beam induced reduction of cerium in pure, mixed and doped ceria. Microscopy Conference (MC) 2013, Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C) and Peter Grünberg Insitute (PGI-5), Forschungszentrum Jülich, 52425 Jülich, Germany, Regensburg, 25–30 August 2013, pp. 190–191.Google Scholar
Tavabi, A.H., Arai, S. & Tanji, T. (2012). In situ analytical electron microscopy studies of redox reactions at a YSZ/Pt interface. Microsc Microanal 18, 538544.CrossRefGoogle Scholar
Tavabi, A.H., Yasenjiang, Z. & Tanji, T. (2011 a). In-situ off-axis electron holography of hetero-interface in oxygen atmosphere. J Electron Micros 60, 307314.Google ScholarPubMed
Tavabi, A.H., Yasenjiang, Z. & Tanji, T. (2011 b). Characterization of interface structures of single and poly crystalline yttria stabilized zirconia-Pt: An electron holography approach, International Union of Microbeam Analysis Societies (IUMAS), V Seoul, pp. 267–268.Google Scholar
Tonomura, A. (1999). Electron Holography, 2nd ed. Germany: Springer.Google Scholar
Tsoga, A., Gupta, A., Naumidis, A. & Nikolopoulos, P. (2011). Gadolinia-doped ceria and yttria stabilized zirconia interfaces: Regarding their application for SOFC technology. J Power Sources 196, 72327236.Google Scholar
Vayssilov, G.N., Lykhach, Y., Migani, A., Staudt, T., Petrova, G.P., Tsud, N., Skala, T., Bruix, A., Illas, F., Prince, K.C., Matolin, V., Neyman, K.M. & Libuda, J. (2011). Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles. Nat Mater 10, 310315.Google ScholarPubMed
Yamamoto, K., Iriyama, Y., Asaka, T., Fujita, H., Fisher, C.A.J., Nonaka, K., Sugita, Y. & Ogumi, Z. (2010). Dynamic visualization of the electric potential in an all-solid-state rechargeable lithium battery. Angew Chem Int Ed 49, 44144417.CrossRefGoogle Scholar
Supplementary material: File

Tavabi Supplementary Material

Figure S1

Download Tavabi Supplementary Material(File)
File 1.9 MB
Supplementary material: File

Tavabi Supplementary Material

Figure S2

Download Tavabi Supplementary Material(File)
File 1.3 MB
Supplementary material: File

Tavabi Supplementary Material

Figure S3

Download Tavabi Supplementary Material(File)
File 3.4 MB
Supplementary material: File

Tavabi Supplementary Material

Figure S4

Download Tavabi Supplementary Material(File)
File 2.4 MB
Supplementary material: File

Tavabi Supplementary Material

Figure S5

Download Tavabi Supplementary Material(File)
File 3.5 MB
Supplementary material: File

Tavabi Supplementary Material

Figure S6

Download Tavabi Supplementary Material(File)
File 5.1 MB