Skip to main content Accessibility help

In Situ High-Resolution Transmission Electron Microscopy (TEM) Observation of Sn Nanoparticles on SnO2 Nanotubes Under Lithiation

  • Jun Young Cheong (a1), Joon Ha Chang (a1) (a2), Sung Joo Kim (a1) (a2), Chanhoon Kim (a1), Hyeon Kook Seo (a1) (a2), Jae Won Shin (a2), Jong Min Yuk (a1), Jeong Yong Lee (a1) (a2) and Il-Doo Kim (a1)...


We trace Sn nanoparticles (NPs) produced from SnO2 nanotubes (NTs) during lithiation initialized by high energy e-beam irradiation. The growth dynamics of Sn NPs is visualized in liquid electrolytes by graphene liquid cell transmission electron microscopy. The observation reveals that Sn NPs grow on the surface of SnO2 NTs via coalescence and the final shape of agglomerated NPs is governed by surface energy of the Sn NPs and the interfacial energy between Sn NPs and SnO2 NTs. Our result will likely benefit more rational material design of the ideal interface for facile ion insertion.


Corresponding author


Hide All

These authors contributed equally to this work.



Hide All
Chang, J.H., Cheong, J.Y., Yuk, J.M., Kim, C., Kim, S.J., Seo, H.K., Kim, I.-D. & Lee, J.Y. (2017). Direct realization of complete conversion and agglomeration dynamics of SnO2 nanoparticles in liquid electrolyte. ACS Omega 2, 63296336.
Chen, Q., Smith, J.M., Park, J., Kim, K., Ho, D., Rasool, H.I., Zettl, A. & Alivisatos, A.P. (2013). 3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy. Nano Lett 13, 45564561.
Cheong, J.Y., Chang, J.H., Seo, H.K., Yuk, J.M., Shin, J.W., Lee, J.Y. & Kim, I.-D. (2016). Growth dynamics of solid electrolyte interphase layer on SnO2 nanotubes realized by graphene liquid cell electron microscopy. Nano Energy 25, 154160.
Cheong, J.Y., Kim, C., Jang, J.S. & Kim, I.-D. (2016). Rational design of Sn-based multicomponent anodes for high performance lithium-ion batteries: SnO2@TiO2@reduced graphene oxide nanotubes. RSC Adv 6, 29202925.
Edström, K., Gustafsson, T. & Thomas, J.O. (2004). The cathode–electrolyte interface in the Li-ion battery. Electrochim Acta 50, 397403.
Gao, P., Wang, L., Zhang, Y.-Y., Huang, Y., Liao, L., Sutter, P., Liu, K., Yu, D. & Wang, E.-G. (2016). High-resolution tracking asymmetric lithium insertion and extraction and local structure ordering in SnS2 . Nano Lett 16, 55825588.
Ghatak, J., Guan, W. & Mobus, G. (2012). In situ TEM observation of lithium nanoparticle growth and morphological cycling. Nanoscale 4, 17541759.
Gu, M., Li, Y., Li, X., Hu, S., Zhang, X., Xu, W., Thevuthasan, S., Baer, D.R., Zhang, J.-G., Liu, J. & Wang, C. (2012). In situ TEM study of lithiation behavior of silicon nanoparticles attached to and embedded in a carbon matrix. ACS Nano 6, 84398447.
Huang, J.Y., Zhong, L., Wang, C.M., Sullivan, J.P., Xu, W., Zhang, L.Q., Mao, S.X., Hudak, N.S., Liu, X.H., Subramanian, A., Fan, H., Qi, L., Kushima, A. & Li, J. (2010). In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 15151520.
Jang, J.-S., Kim, S.-J., Choi, S.-J., Kim, N.-H., Hakim, M., Rothschild, A. & Kim, I.-D. (2015). Thin-walled SnO2 nanotubes functionalized with Pt and Au catalysts via the protein templating route and their selective detection of acetone and hydrogen sulfide molecules. Nanoscale 7, 1641716426.
Kim, C., Phillips, P.J., Xu, L., Dong, A., Buonsanti, R., Klie, R.F. & Cabana, J. (2015). Stabilization of battery electrode/electrolyte interfaces employing nanocrystals with passivating epitaxial shells. Chem Mater 27, 394399.
Kim, S.J., Kargar, A., Wang, D., Graham, G.W. & Pan, X. (2015). Lithiation of rutile TiO2-coated Si NWs observed by in situ TEM. Chem Mater 27, 69296933.
Kim, S.J., Noh, S.-Y., Kargar, A., Wang, D., Graham, G.W. & Pan, X. (2014). In situ TEM observation of the structural transformation of rutile TiO2 nanowire during electrochemical lithiation. Chem Commun 50, 99329935.
Li, L., Yin, X., Liu, S., Wang, Y., Chen, L. & Wang, T. (2010). Electrospun porous SnO2 nanotubes as high capacity anode materials for lithium ion batteries. Electrochem Commun 12, 13831386.
McDowell, M.T., Lee, S.W., Harris, J.T., Korgel, B.A., Wang, C., Nix, W.D. & Cui, Y. (2013). In situ TEM of two-phase lithiation of amorphous silicon nanospheres. Nano Lett 13, 758764.
McDowell, M.T., Lu, Z., Koski, K.J., Yu, J.H., Zheng, G. & Cui, Y. (2015). In situ observation of divergent phase transformations in individual sulfide nanocrystals. Nano Lett 15, 12641271.
Peled, E., Menachem, C., Bar-Tow, D. & Melman, A. (1996). Improved graphite anode for lithium-ion batteries chemically: Bonded solid electrolyte interface and nanochannel formation. J Electrochem Soc 143, L4L7.
Piper, D.M., Evans, T., Leung, K., Watkins, T., Olson, J., Kim, S.C., Han, S.S., Bhat, V., Oh, K.H., Buttry, D.A. & Lee, S.-H. (2015). Stable silicon-ionic liquid interface for next-generation lithium-ion batteries. Nature Commun 6, 6230.
Sellers, M.S., Schultz, A.J., Basaran, C. & Kofke, D.A. (2010). Atomistic modeling of β-Sn surface energies and adatom diffusivity. Appl Sur Sci 256, 44024407.
Tarascon, J.-M. & Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. Nature 414, 359367.
Wang, C.-M., Xu, W., Liu, J., Zhang, J.-G., Saraf, L.V., Arey, B.W., Choi, D., Yang, Z.-G., Xiao, J., Thevuthasan, S. & Baer, D.R. (2011). In situ transmission electron microscopy observation of microstructure and phase evolution in a SnO2 nanowire during lithium intercalation. Nano Lett 11, 18741880.
Wang, Y., Zhang, L., Wu, Y., Zhong, Y., Hu, Y. & Lou, X.W. (2015). Carbon-coated Fe3O4 microspheres with a porous multideck-cage structure for highly reversible lithium storage. Chem Commun 51, 69216924.
Yuk, J.M., Jeong, M., Kim, S.Y., Seo, H.K., Kim, J. & Lee, J.Y. (2013). In situ atomic imaging of coalescence of Au nanoparticles on graphene: Rotation and grain boundary migration. Chem Commun 49, 1147911481.
Yuk, J.M., Park, J., Ercius, P., Kim, K., Hellebusch, D.J., Crommie, M.F., Lee, J.Y., Zettl, A. & Alivisatos, A.P. (2012). High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336, 6164.
Yuk, J.M., Seo, H.K., Choi, J.W. & Lee, J.Y. (2014). Anisotropic lithiation onset in silicon nanoparticle anode revealed by in situ graphene liquid cell electron microscopy. ACS Nano 8, 74787485.
Yuk, J.M., Zhou, Q., Chang, J., Ercius, P., Alivisatos, A.P. & Zettl, A. (2016). Real-time observation of water-soluble mineral precipitation in aqueous solution by in situ high-resolution electron microscopy. ACS Nano 10, 8892.
Zeng, Z., Zhang, X., Bustillo, K., Niu, K., Gammer, C., Xu, J. & Zheng, H. (2015). In situ study of lithiation and delithiation of MoS2 nanosheets using electrochemical liquid cell transmission electron microscopy. Nano Lett 15, 52145220.
Zhang, L.Q., Liu, X.H., Perng, Y.-C., Cho, J., Chang, J.P., Mao, S.X., Ye, Z.Z. & Huang, J.Y. (2012). Direct observation of Sn crystal growth during the lithiation and delithiation processes of SnO2 nanowires. Micron 43, 11271133.
Zheng, J., Gu, M., Xiao, J., Polzin, B.J., Yan, P., Chen, X., Wang, C. & Zhang, J.-G. (2014). Functioning mechanism of AlF3 coating on the Li- and Mn-rich cathode materials. Chem Mater 26, 63206327.
Zhou, W., Wang, J., Zhang, F., Liu, S., Wang, J., Yin, D. & Wang, L. (2015). SnO2 nanocrystals anchored on N-doped graphene for high-performance lithium storage. Chem Commun 51, 36603662.


Related content

Powered by UNSILO
Type Description Title
Supplementary materials

Cheong et al supplementary material
Cheong et al supplementary material 1

 Video (25.3 MB)
25.3 MB

In Situ High-Resolution Transmission Electron Microscopy (TEM) Observation of Sn Nanoparticles on SnO2 Nanotubes Under Lithiation

  • Jun Young Cheong (a1), Joon Ha Chang (a1) (a2), Sung Joo Kim (a1) (a2), Chanhoon Kim (a1), Hyeon Kook Seo (a1) (a2), Jae Won Shin (a2), Jong Min Yuk (a1), Jeong Yong Lee (a1) (a2) and Il-Doo Kim (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.