Skip to main content Accessibility help
×
Home

Improvement of Electron Probe Microanalysis of Boron Concentration in Silicate Glasses

  • Lining Cheng (a1) (a2), Chao Zhang (a2) (a3), Xiaoyan Li (a2) (a3), Renat R. Almeev (a2), Xiaosong Yang (a1) and Francois Holtz (a2)...

Abstract

The determination of low boron concentrations in silicate glasses by electron probe microanalysis (EPMA) remains a significant challenge. The internal interferences from the diffraction crystal, i.e. the Mo-B4C large d-spacing layered synthetic microstructure crystal, can be thoroughly diminished by using an optimized differential mode of pulse height analysis (PHA). Although potential high-order spectral interferences from Ca, Fe, and Mn on the B peak can be significantly reduced by using an optimized differential mode of PHA, a quantitative calibration of the interferences is required to obtain accurate boron concentrations in silicate glasses that contain these elements. Furthermore, the first-order spectral interference from ClL-lines is so strong that they hinder reliable EPMA of boron concentrations in Cl-bearing silicate glasses. Our tests also indicate that, due to the strongly curved background shape on the high-energy side of B, an exponential regression is better than linear regression for estimating the on-peak background intensity based on measured off-peak background intensities. We propose that an optimal analytical setting for low boron concentrations in silicate glasses (≥0.2 wt% B2O3) would best involve a proper boron-rich glass standard, a low accelerating voltage, a high beam current, a large beam size, and a differential mode of PHA.

Copyright

Corresponding author

*Author for correspondence: Chao Zhang, E-mail: c.zhang@mineralogie.uni-hannover.de

References

Hide All
Allaz, JM, Williams, ML, Jercinovic, MJ, Goemann, K & Donovan, J (2019). Multipoint background analysis: Gaining precision and accuracy in microprobe trace element analysis. Microsc Microanal 25(1), 3046.
Analytical Methods Committee (1987). Recommendations for the definition, estimation and use of the detection limit. Analyst 112(2), 199204.
Bastin, G & Heijligers, H (1992). Present and future of light element analysis with electron beam instruments. Microbeam Anal 1(2), 6173.
Bastin, GF & Heijligers, HJM (2000). Quantitative electron probe microanalysis of boron. J Solid State Chem 154(1), 177187.
Bauer, U, Behrens, H, Reinsch, S, Morin, E & Stebbins, J (2017). Structural investigation of hydrous sodium borosilicate glasses. J Non-Cryst Solids 465, 3948.
Berndt, J, Liebske, C, Holtz, F, Freise, M, Nowak, M, Ziegenbein, D, Hurkuck, W & Koepke, J (2002). A combined rapid-quench and H2-membrane setup for internally heated pressure vessels: Description and application for water solubility in basaltic melts. Am Mineral 87(11–12), 17171726.
Demers, H, Horny, P, Gauvin, R & Lifshin, E (2002). WinX-Ray: A new montecarlo program for the simulation of X-ray and charging materials. Microsc Microanal 8(S02), 14981499.
Dingwell, DB, Pichavant, M & Holtz, F (1996). Experimental studies of boron in granitic melts. Rev Mineral Geochem 33(1), 330385.
Donovan, JJ, Lowers, HA & Rusk, BG (2011). Improved electron probe microanalysis of trace elements in quartz. Am Mineral 96(2–3), 274282.
Dyar, MD, Wiedenbeck, M, Robertson, D, Cross, LR, Delaney, JS, Ferguson, K, Francis, CA, Grew, ES, Guidotti, CV & Hervig, RL (2001). Reference minerals for the microanalysis of light elements. Geostand Newslett 25(2–3), 441463.
Fialin, M, Rémy, H, André, JM, Chauvineau, JP, Rousseaux, F, Ravet, MF, Decanini, D & Cambril, E (1996). Extending the possibilities of soft X-ray spectrometry through the etching of layered synthetic microstructure monochromators. X-Ray Spectrom 25(2), 6065.
Fournelle, J, Donovan, J, Kim, S & Perepezko, J (2000).Analysis of boron by EPMA: Correction for dual Mo and Si interferences for phases in the Mo-B-Si system, Institute of Physics Conference Series, London, pp. 425426.
Guillong, M, Meier, DL, Allan, MM, Heinrich, CA & Yardley, BW (2008). Appendix A6: SILLS: A MATLAB-based program for the reduction of laser ablation ICP-MS data of homogeneous materials and inclusions. Mineral Assoc Canada Short Course 40, 328333.
Holtz, F, Dingwell, DB & Behrens, H (1993). Effects of F, B2O3 and P2O5 on the solubility of water in haplogranite melts compared to natural silicate melts. Contrib Mineral Petrol 113(4), 492501.
Horn, I, von Blanckenburg, F, Schoenberg, R, Steinhoefel, G & Markl, G (2006). In situ iron isotope ratio determination using UV-femtosecond laser ablation with application to hydrothermal ore formation processes. Geochim Cosmochim Acta 70(14), 36773688.
Jochum, KP, Dingwell, DB, Rocholl, A, Stoll, B, Hofmann, AW, Becker, S, Besmehn, A, Bessette, D, Dietze, H-J, Dulski, P, Erzinger, J, Hellebrand, E, Hoppe, P, Horn, I, Janssens, K, Jenner, GA, Klein, M, McDonough, WF, Maetz, M, Mezger, K, Müker, C, Nikogosian, IK, Pickhardt, C, Raczek, I, Rhede, D, Seufert, HM, Simakin, SG, Sobolev, AV, Spettel, B, Straub, S, Vincze, L, Wallianos, A, Weckwerth, G, Weyer, S, Wolf, D & Zimmer, M (2000). The preparation and preliminary characterisation of eight geological MPI-DING reference glasses for in-situ microanalysis. Geostand Newslett 24(1), 87133.
Jochum, KP, Weis, U, Stoll, B, Kuzmin, D, Yang, Q, Raczek, I, Jacob, DE, Stracke, A, Birbaum, K, Frick, DA, Günther, D & Enzweiler, J (2011). Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostand Geoanal Res 35(4), 397429.
Kobayashi, H, Toda, K, Kohno, H, Arai, T & Wilson, R (1995). The study of some peculiar phenomena in ultra-soft X-ray measurements using synthetic multilayer crystals. Adv X-Ray Anal 38, 307312.
London, D (1987). Internal differentiation of rare-element pegmatites: Effects of boron, phosphorus, and fluorine. Geochim Cosmochim Acta 51(3), 403420.
London, D, Morgan, GB & Wolf, MB (1996). Boron in granitic rocks and their contact aureoles. Rev Mineral Geochem 33(1), 299330.
McGee, JJ & Anovitz, LM (1996). Electron probe microanalysis of geologic materials for boron. Rev Mineral 33, 770788.
McGee, JJ, Slack, JF & Herrington, CR (1991).Boron analysis by electron microprobe using MoB4C layered synthetic crystals. Am Mineral 76, 681684.
Meier, DC, Davis, JM & Vicenzi, EP (2011). An examination of kernite (Na2B4O6(OH)2·3H2O) using X-ray and electron spectroscopies: Quantitative microanalysis of a hydrated low-Z mineral. Microsc Microanal 17(5), 718727.
Morgan, GB VI (2015). Practical aspects of the electron probe analysis of boron in silicates using a LSM device with large 2d. Microsc Microanal 21, 1141.
Morgan, GB VI & London, D (1996). Optimizing the electron microprobe analysis of hydrous alkali aluminosilicate glasses. Am Mineral 81, 11761185.
Pichavant, M (1981). An experimental study of the effect of boron on a water saturated haplogranite at 1 Kbarvapour pressure. Contrib Mineral Petrol 76(4), 430439.
Schmidt, BC (2004). Effect of boron on the water speciation in (alumino) silicate melts and glasses. Geochim Cosmochim Acta 68(24), 50135025.
Tiepolo, M, Zanetti, A & Vannucci, R (2005). Determination of lithium, beryllium and boron at trace levels by laser ablation-inductively coupled plasma-sector field mass spectrometry. Geostand Geoanal Res 29(2), 211224.
Wenzel, JT & Sanders, DM (1982). Sodium and boron vaporisation from a boric oxide and a borosilicate glass melt. Phys Chem Glasses 23(2), 4752.
Zhang, C, Koepke, J, Albrecht, M, Horn, I & Holtz, F (2017).Apatite in the dike-gabbro transition zone of mid-ocean ridge: Evidence for brine assimilation by axial melt lens. Am Mineral 102(3), 558570.
Zhang, C, Koepke, J, Wang, L-X, Wolff, PE, Wilke, S, Stechern, A, Almeev, R & Holtz, F (2016). A practical method for accurate measurement of trace level fluorine in Mg- and Fe-bearing minerals and glasses using electron probe microanalysis. Geostand Geoanal Res 40(3), 351363.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed