Skip to main content Accessibility help
×
Home

Improvement of Depth Resolution of ADF-SCEM by Deconvolution: Effects of Electron Energy Loss and Chromatic Aberration on Depth Resolution

  • Xiaobin Zhang (a1) (a2) (a3), Masaki Takeguchi (a1) (a2) (a3), Ayako Hashimoto (a2) (a3) (a4), Kazutaka Mitsuishi (a1) (a2) (a3) (a4), Meguru Tezuka (a1) and Masayuki Shimojo (a4) (a5)...

Abstract

Scanning confocal electron microscopy (SCEM) is a new imaging technique that is capable of depth sectioning with nanometer-scale depth resolution. However, the depth resolution in the optical axis direction (Z) is worse than might be expected on the basis of the vertical electron probe size calculated with the existence of spherical aberration. To investigate the origin of the degradation, the effects of electron energy loss and chromatic aberration on the depth resolution of annular dark-field SCEM were studied through both experiments and computational simulations. The simulation results obtained by taking these two factors into consideration coincided well with those obtained by experiments, which proved that electron energy loss and chromatic aberration cause blurs at the overfocus sides of the Z-direction intensity profiles rather than degrade the depth resolution much. In addition, a deconvolution method using a simulated point spread function, which combined two Gaussian functions, was adopted to process the XZ-slice images obtained both from experiments and simulations. As a result, the blurs induced by energy loss and chromatic aberration were successfully removed, and there was also about 30% improvement in the depth resolution in deconvoluting the experimental XZ-slice image.

Copyright

Corresponding author

Corresponding author. E-mail: ZHANG.Xiabin@nims.go.jp

References

Hide All
Cosgriff, E.C., D'Alfonso, A.J., Allen, L.J., Findlay, S.D., Kirkland, A.I. & Nellist, P.D. (2008). Three-dimensional imaging in double aberration-corrected scanning confocal electron microscopy, part I: Elastic scattering. Ultramicroscopy 108, 15581566.
D'Alfonso, A.J., Cosgriff, E.C., Findlay, S.D., Behan, G., Kirkland, A.I., Nellist, P.D. & Allen, L.J. (2008). Three-dimensional imaging in double aberration-corrected scanning confocal electron microscopy, part II: Inelastic scattering. Ultramicroscopy 108, 15671578.
Einspahr, J.J. & Voyles, P.M. (2006). Prospects for 3D, nanometer-resolution imaging by confocal STEM. Ultramicroscopy 106, 10411052.
Frigo, S.P., Levine, Z.H. & Zaluzec, N.J. (2002). Submicron imaging of buried integrated circuit structures using scanning confocal electron microscopy. Appl Phys Lett 81, 21122114.
Gonzalez, R.C., Woods, R.E. & Eddins, S.L. (2003). Digital Image Processing Using Matlab. Upper Saddle River, NJ: Prentice Hall.
Hashimoto, A., Shimojo, M., Mitsuishi, K. & Takeguchi, M. (2009). Three-dimensional imaging of carbon nanostructures by scanning confocal electron microscopy. J Appl Phys 106, 086101.
Hashimoto, A., Shimojo, M., Mitsuishi, K. & Takeguchi, M. (2010). Three-dimensional optical sectioning by scanning confocal electron microscopy with a stage-scanning system. Microsc Microanal 16, 233238.
Intaraprasonk, V., Xin, H.L. & Muller, D.A. (2008). Analytic derivation of optimal imaging conditions for incoherent imaging in aberration-corrected electron microscopes. Ultramicroscopy 108, 14541466.
Kirkland, E.J. (1998). Advanced Computing in Electron Microscopy. New York: Springer.
Mitsuishi, K., Hashimoto, A., Takeguchi, M., Shimojo, M. & Ishizuka, K. (2010). Imaging properties of bright-field and annular-dark-field scanning confocal electron microscopy. Ultramicroscopy 111, 2026.
Mitsuishi, K., Iakoubovskii, K., Takeguchi, M., Shimojo, M., Hashimoto, A. & Furuya, K. (2008). Bloch wave-based calculation of imaging properties of high-resolution scanning confocal electron microscopy. Ultramicroscopy 108, 981988.
Nellist, P.D., Behan, G., Kirkland, A.I. & Hetherington, C.J.D. (2006). Confocal operation of a transmission electron microscope with two aberration correctors. Appl Phys Lett 89, 124105.
Nellist, P.D., Cosgriff, E.C., Behan, G. & Kirkland, A.I. (2008). Imaging modes for scanning confocal electron microscopy in a double aberration-corrected transmission electron microscope. Microsc Microanal 14, 8288.
Takeguchi, M., Hashimoto, A., Mitsuishi, K., Zhang, X., Shimojo, M., Ishikawa, T., Deguchi, S., Naruse, T. & Kondo, Y. (2010). Development of a double-tilt stage-scanning sample holder for scanning confocal electron microscopy of single crystal samples. 2nd International Symposium on Advanced Microscopy and Theoretical Calculations (AMTC-2), Nagoya, Japan, vol. 2, pp. 110–111.
Takeguchi, M., Hashimoto, A., Shimojo, M., Mitsuishi, K. & Furuya, K. (2008). Development of a stage-scanning system for high-resolution confocal STEM. J Electron Microsc 57, 123127.
Wang, P., Behan, G., Takeguchi, M., Hashimoto, A., Mitsuishi, K., Shinojo, M., Kirkland, A. & Nellist, P. (2010). Nanoscale energy-filtered scanning confocal electron microscopy using a double-aberration-corrected transmission electron microscope. Phy Rev Lett 104, 200801.
Xin, H.L. & Muller, D.A. (2009). Aberration-corrected ADF-STEM depth sectioning and prospects for reliable 3D imaging in S/TEM. J Electron Microsc 58, 157165.
Xin, H.L. & Muller, D.A. (2010). Three-dimensional imaging in aberration-corrected electron microscopes. Microsc Microanal 16, 445455.
Zaluzec, N. J. (2003). The scanning confocal electron microscope. Microscopy Today 6, 812.

Keywords

Improvement of Depth Resolution of ADF-SCEM by Deconvolution: Effects of Electron Energy Loss and Chromatic Aberration on Depth Resolution

  • Xiaobin Zhang (a1) (a2) (a3), Masaki Takeguchi (a1) (a2) (a3), Ayako Hashimoto (a2) (a3) (a4), Kazutaka Mitsuishi (a1) (a2) (a3) (a4), Meguru Tezuka (a1) and Masayuki Shimojo (a4) (a5)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed