Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-25T10:10:00.445Z Has data issue: false hasContentIssue false

Hyperspectral Cathodoluminescence Examination of Defects in a Carbonado Diamond

Published online by Cambridge University Press:  14 December 2012

Nicholas C. Wilson*
Affiliation:
CSIRO Process Science and Engineering, Clayton, VIC 3168, Australia
Colin M. MacRae
Affiliation:
CSIRO Process Science and Engineering, Clayton, VIC 3168, Australia
Aaron Torpy
Affiliation:
CSIRO Process Science and Engineering, Clayton, VIC 3168, Australia
Cameron J. Davidson
Affiliation:
CSIRO Process Science and Engineering, Clayton, VIC 3168, Australia
Edward P. Vicenzi
Affiliation:
Museum Conservation institute, Smithsonian Institution, Suitland, MD 20746, USA
*
*Corresponding author.nick.wilson@csiro.au
Get access

Abstract

Hyperspectral cathodoluminescence mapping is used to examine a carbonado diamond. The hyperspectral dataset is examined using a data clustering algorithm to interpret the range of spectral shapes present within the dataset, which are related to defects within the structure of the diamond. The cathodoluminescence response from this particular carbonado diamond can be attributed to a small number of defect types: N-V0, N2V, N3V, a 3.188 eV line, which is attributed to radiation damage, and two broad luminescence bands. Both the N2V and 3.188 eV defects require high-temperature annealing, which has implications for interpreting the thermal history of the diamond. In addition, bright halos observed within the diamond cathodoluminescence, from alpha decay radiation damage, can be attributed to the decay of 238U.

Type
Special Section: Cathodoluminescence
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baranov, P.G., Il'in, I.V., Soltamova, A.A., Vul'l, A.Y., Kidalov, S.V., Shakhov, F.M., Mamin, G.V., Orlinski, S.B. & Solakhov, M.K. (2009). Electron spin resonance detection and identification of nitrogen centers in nanodiamonds. JETP Lett 89, 409413.CrossRefGoogle Scholar
Bragg, W.H. & Kleeman, R. (1905). Alpha particles or radium, and their loss of range passing through various atoms and molecules. Philos Mag 10, 318334.CrossRefGoogle Scholar
Cartigny, P. (2010). Mantle-related carbonados? Geochemical insights from diamonds from the Dachine komatiite (French Guiana). Earth Planet Sci Lett 296(3-4), 329339.CrossRefGoogle Scholar
Collins, A.T. (1992). The characterisation of point defects in diamond by luminescence spectroscopy. Diam Relat Mater 1, 457469.CrossRefGoogle Scholar
Collins, A.T. & Lawson, S.C. (1989). Cathodoluminescence studies of isotope shifts associated with localised vibrational modes in synthetic diamond. J Phys-Condens Mat 1, 69296937.CrossRefGoogle Scholar
Davies, G. (1981). The Jahn-Teller effect and vibronic coupling at deep levels in diamond. Rep Prog Phys 44, 787830.CrossRefGoogle Scholar
Demeny, A., Nagy, G., Bajnoczi, B., Nemeth, T., Garai, J., Drozd, V. & Hegner, E. (2011). Hydrogen isotope compositions in carbonado diamond: Constrains on terrestrial formation. Cent Eur Geol 54, 5174.CrossRefGoogle Scholar
Garai, J., Haggerty, S., Rekhi, S. & Chance, M. (2006). Infrared absorption investigations confirm the extraterrestrial origin of Carbonado-diamonds. Astrophys J 653, L153L156.CrossRefGoogle Scholar
Harte, B., Fitzsimons, C.W., Harris, J.W. & Otter, M.L. (1999). Carbon isotope ratios and nitrogen abundances in relation to cathodoluminescence characteristics for some diamonds from the Kaapvaal Province, S. Africa. Mineral Mag 63, 829856.CrossRefGoogle Scholar
Heaney, P.J., Vicenzi, E.P. & De, S. (2005). Strange diamonds: The mysterious origins of carbonado and framesite. Elements 1, 8589.CrossRefGoogle Scholar
Iancu, O.G., Cossio, R., Korsakov, A.V., Compagnoni, R. & Popa, C. (2008). Cathodoluminescence spectra of diamonds in UHP rocks from the Kokchetav Massif, Kazakhstan. J Lumin 128, 16841688.CrossRefGoogle Scholar
Jain, A.K., Murty, M.N. & Flynn, P.J. (1999). Data clustering: A review. ACM Comput Surv 31, 264318.CrossRefGoogle Scholar
Kagi, H., Sato, S., Akagi, T. & Kanda, H. (2007). Generation history of carbonado inferred from photoluminescence spectra,cathodoluminescence imaging, and carbon-isotopic composition. Am Mineral 92, 217224.CrossRefGoogle Scholar
Kagi, H., Takahashi, K., Hidaka, H. & Masuda, A. (1994). Chemical properties of Central African carbonadao and it genetic implications. Geochim Cosmochim Acta 58, 26292638.CrossRefGoogle Scholar
Kotula, P.G., Keenan, M.R. & Michael, J.R. (2003). Automated analysis of SEM X-ray spectral images: A powerful new microanalysis tool. Microsc Microanal 9, 117.CrossRefGoogle ScholarPubMed
MacQueen, J.B. (1967). Some methods for classification and analysis of multivariate observations. Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297. Google Scholar
MacRae, C.M., Wilson, N.C., Johnson, S.A., Phillips, P.L. & Otsuki, M. (2005). Hyperspectral mapping—Combining cathodoluminescence and X-ray collection in an electron microprobe. Microsc Res Techniq 67, 271277.CrossRefGoogle Scholar
Magee, C.W. (2001). Geologic, microstructural, and spectroscopic constraints on the origin and history of carbonado diamond, p. 247. PhD Thesis. Canberra, Australia: Research School of Earth Sciences, Australian National University. Google Scholar
McCall, G.J.H. (2009). The carbonado diamond conundrum. Earth Sci Rev 93, 8591.CrossRefGoogle Scholar
Owen, M.R. (1988). Radiation-damage halos in quartz. Geology 16, 529532.2.3.CO;2>CrossRefGoogle Scholar
Rondeau, B., Sautter, V. & Barjon, J. (2008). New columnar texture of carbonado: Cathodoluminescence study. Diam Relat Mater 17, 18971901.CrossRefGoogle Scholar
Ross, G.J.S. (1968). Classification techniques for large sets of data. In Numerical Taxonomy, Cole, A.J., (Ed.). New York: Academic Press, Inc. Google Scholar
Sautter, V., Lorand, J.-P., Cordier, P., Rondeau, B., Leroux, H., Ferraris, C. & Pont, S. (2011). Petrogenesis of mineral micro-inclusions in an uncommon carbonado. Eur J Mineral 23, 721729.CrossRefGoogle Scholar
Shames, A.I., Osipov, V.Y., von Bardeleben, H.J. & Vul', A.Y. (2012). Spin S=1 centers: A universal type of paramagnetic defects in nanodiamonds of dynamic synthesis. J Phys-Condens Mat 24, 225302-1–8.CrossRefGoogle Scholar
Smith, J.V. & Dawson, J.B. (1985). Carbonado: Diamond aggregates from early impacts. Geology 13, 342343.2.0.CO;2>CrossRefGoogle Scholar
Stork, C.L. & Keenan, M.R. (2010). Advantages of clustering in the phase classification of hyperspectral materials images. Microsc Microanal 16, 810820.CrossRefGoogle ScholarPubMed
Taylor, W.R., Canil, D. & Milledge, H.J. (1996). Kinetics of Ib to IaA nitrogen aggregation in diamond. Geochim Cosmochim Acta 60, 47254733.CrossRefGoogle Scholar
Trueb, L.F. & Christiaan De Wys, E. (1969). Carbonado: Natural polycrystalline diamond. Science 165, 799802.CrossRefGoogle ScholarPubMed
Vicenzi, E.P., Rose, T., Fries, M., Steel, A. & Magee, C. (2006). A cathodoluminescence (and Raman) imaging and spectroscopic study of ancient polycrystalline diamond. Microsc Microanal 12(Suppl 2), 15181519.CrossRefGoogle Scholar
Walker, J. (1979). Optical absorption and luminescence in diamond. Rep Prog Phys 42, 16051659.CrossRefGoogle Scholar
Ward, J.H. (1963). Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58, 236244.CrossRefGoogle Scholar
Wilson, N.C. & MacRae, C.M. (2005). An automated hybrid clustering technique applied to spectral data sets. Microsc Microanal 11(Suppl 2), 434435CD.CrossRefGoogle Scholar
Wilson, N.C., MacRae, C.M. & Torpy, A. (2008). Analysis of combined multi-signal hyperspectral datasets using a clustering algorithm and visualisation tools. Microsc Microanal 14(Suppl 2), 764765.CrossRefGoogle Scholar
Zaitsev, A.M. (2001). Optical Properties of Diamond. Berlin: Springer.CrossRefGoogle Scholar