Skip to main content Accessibility help

Hybrid Detectors Improved Time-Lapse Confocal Microscopy of PML and 53BP1 Nuclear Body Colocalization in DNA Lesions

  • Veronika Foltánková (a1), Pavel Matula (a2), Dmitry Sorokin (a2), Stanislav Kozubek (a1) and Eva Bártová (a1)...


We used hybrid detectors (HyDs) to monitor the trajectories and interactions of promyelocytic leukemia (GFP-PML) nuclear bodies (NBs) and mCherry-53BP1-positive DNA lesions. 53BP1 protein accumulates in NBs that occur spontaneously in the genome or in γ-irradiation-induced foci. When we induced local DNA damage by ultraviolet irradiation, we also observed accumulation of 53BP1 proteins into discrete bodies, instead of the expected dispersed pattern. In comparison with photomultiplier tubes, which are used for standard analysis by confocal laser scanning microscopy, HyDs significantly eliminated photobleaching of GFP and mCherry fluorochromes during image acquisition. The low laser intensities used for HyD-based confocal analysis enabled us to observe NBs for the longer time periods, necessary for studies of the trajectories and interactions of PML and 53BP1 NBs. To further characterize protein interactions, we used resonance scanning and a novel bioinformatics approach to register and analyze the movements of individual PML and 53BP1 NBs. The combination of improved HyD-based confocal microscopy with a tailored bioinformatics approach enabled us to reveal damage-specific properties of PML and 53BP1 NBs.


Corresponding author

* Corresponding author. E-mail:


Hide All
Andreassen, P.R., Ho, G.P. & D'Andrea, A.D. (2006). DNA damage responses and their many interactions with the replication fork. Carcinogenesis 27(5), 883892.
Ayoub, N., Jeyasekharan, A.D., Bernal, J.A. & Venkitaraman, A.R. (2008). HP1-beta mobilization promotes chromatin changes that initiate the DNA damage response. Nature 453(7195), 682686.
Baldeyron, C., Soria, G., Roche, D., Cook, A.J. & Almouzni, G. (2011). HP1alpha recruitment to DNA damage by p150CAF-1 promotes homologous recombination repair. J Cell Biol 193(1), 8195.
Bártová, E., Šustáčková, G., Stixová, L., Kozubek, S., Legartová, S. & Foltánková, V. (2011). Recruitment of Oct4 protein to UV-damaged chromatin in embryonic stem cells. PLoS One 6(12), e27281.
Bischof, O., Kim, S.H., Irving, J., Beresten, S., Ellis, N.A. & Campisi, J. (2001). Regulation and localization of the Bloom syndrome protein in response to DNA damage. J Cell Biol 153(2), 367380.
Boe, S.O., Haave, M., Jul-Larsen, A., Grudic, A., Bjerkvig, R. & Lonning, P.E. (2006). Promyelocytic leukemia nuclear bodies are predetermined processing sites for damaged DNA. J Cell Sci 119(Pt 16), 32843295.
Boisvert, F.M., Hendzel, M.J. & Bazett-Jones, D.P. (2000). Promyelocytic leukemia (PML) nuclear bodies are protein structures that do not accumulate RNA. J Cell Biol 148(2), 283292.
Bunting, S.F., Callen, E., Wong, N., Chen, H.T., Polato, F., Gunn, A., Bothmer, A., Feldhahn, N., Fernandez-Capetillo, O., Cao, L., Xu, X., Deng, C.X., Finkel, T., Nussenzweig, M., Stark, J.M. & Nussenzweig, A. (2010). 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell 141(2), 243254.
Carbone, R., Pearson, M., Minucci, S. & Pelicci, P.G. (2002). PML NBs associate with the hMre11 complex and p53 at sites of irradiation induced DNA damage. Oncogene 21(11), 16331640.
Ching, R.W., Dellaire, G., Eskiw, C.H. & Bazett-Jones, D.P. (2005). PML bodies: A meeting place for genomic loci? J Cell Sci 118(Pt 5), 847854.
Cremer, C. (2012). Optics far beyond the diffraction limit. In Springer Handbook of Lasers and Optics, Träger, F. (Ed.), pp. 13591397. Berlin, Heidelberg: Springer.
Cremer, T. & Cremer, M. (2010). Chromosome territories. Cold Spring Harb Perspect Biol 2(3), a003889.
Dellaire, G. & Bazett-Jones, D.P. (2004). PML nuclear bodies: Dynamic sensors of DNA damage and cellular stress. Bioessays 26(9), 963977.
De Vylder, J., De Vos, W.H., Manders, E.M. & Philips, W. (2011). 2D mapping of strongly deformable cell nuclei-based on contour matching. Cytometry A 79(7), 580588.
Dimitrova, N., Chen, Y.C., Spector, D.L. & de Lange, T. (2008). 53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility. Nature 456(7221), 524528.
Dundr, M. (2012). Nuclear bodies: Multifunctional companions of the genome. Curr Opin Cell Biol 24(3), 415422.
Eskiw, C.H., Dellaire, G. & Bazett-Jones, D.P. (2004). Chromatin contributes to structural integrity of promyelocytic leukemia bodies through a SUMO-1-independent mechanism. J Biol Chem 279(10), 95779585.
Gresko, E., Ritterhoff, S., Sevilla-Perez, J., Roscic, A., Frobius, K., Kotevic, I., Vichalkovski, A., Hess, D., Hemmings, B.A. & Schmitz, M.L. (2009). PML tumor suppressor is regulated by HIPK2-mediated phosphorylation in response to DNA damage. Oncogene 28(5), 698708.
Harrigan, J.A., Belotserkovskaya, R., Coates, J., Dimitrova, D.S., Polo, S.E., Bradshaw, C.R., Fraser, P. & Jackson, S.P. (2011). Replication stress induces 53BP1-containing OPT domains in G1 cells. J Cell Biol 193(1), 97108.
Jackson, S.P. & Bartek, J. (2009). The DNA-damage response in human biology and disease. Nature 461(7267), 10711078.
Krejčí, J., Harničárová, A., Kurová, J., Uhlířová, R., Kozubek, S., Legartová, S., Hájek, R. & Bartova, E. (2008). Nuclear organization of PML bodies in leukaemic and multiple myeloma cells. Leuk Res 32(12), 18661877.
Kruhlak, M.J., Celeste, A., Dellaire, G., Fernandez-Capetillo, O., Muller, W.G., McNally, J.G., Bazett-Jones, D.P. & Nussenzweig, A. (2006). Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks. J Cell Biol 172(6), 823834.
Lallemand-Breitenbach, V. & de The, H. (2010). PML nuclear bodies. Cold Spring Harb Perspect Biol 2(5), a000661.
Luijsterburg, M.S., Dinant, C., Lans, H., Stap, J., Wiernasz, E., Lagerwerf, S., Warmerdam, D.O., Lindh, M., Brink, M.C., Dobrucki, J.W., Aten, J.A., Fousteri, M.I., Jansen, G., Dantuma, N.P., Vermeulen, W., Mullenders, L.H., Houtsmuller, A.B., Verschure, P.J. & van Driel, R. (2009). Heterochromatin protein 1 is recruited to various types of DNA damage. J Cell Biol 185(4), 577586.
Lukas, J. & Bartek, J. (2009). DNA repair: New tales of an old tail. Nature 458(7238), 581583.
Manis, J.P., Morales, J.C., Xia, Z., Kutok, J.L., Alt, F.W. & Carpenter, P.B. (2004). 53BP1 links DNA damage-response pathways to immunoglobulin heavy chain class-switch recombination. Nat Immunol 5(5), 481487.
Matula, P., Kozubek, M. & Dvořák, V. (2006). Fast point-based 3-D alignment of live cells. IEEE Trans Image Process 15(8), 23882396.
Maul, G.G., Negorev, D., Bell, P. & Ishov, A.M. (2000). Review: Properties and assembly mechanisms of ND10, PML bodies, or PODs. J Struct Biol 129(2-3), 278287.
Muratani, M., Gerlich, D., Janicki, S.M., Gebhard, M., Eils, R. & Spector, D.L. (2002). Metabolic-energy-dependent movement of PML bodies within the mammalian cell nucleus. Nat Cell Biol 4(2), 106110.
Nagy, Z. & Soutoglou, E. (2009). DNA repair: Easy to visualize, difficult to elucidate. Trends Cell Biol 19(11), 617629.
Polo, S.E. & Jackson, S.P. (2011). Dynamics of DNA damage response proteins at DNA breaks: A focus on protein modifications. Genes Dev 25(5), 409433.
Reina-San-Martin, B., Chen, J., Nussenzweig, A. & Nussenzweig, M.C. (2007). Enhanced intra-switch region recombination during immunoglobulin class switch recombination in 53BP1-/- B cells. Eur J Immunol 37(1), 235239.
Rogakou, E.P., Pilch, D.R., Orr, A.H., Ivanova, V.S. & Bonner, W.M. (1998). DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273(10), 58585868.
Scaglioni, P.P., Yung, T.M., Cai, L.F., Erdjument-Bromage, H., Kaufman, A.J., Singh, B., Teruya-Feldstein, J., Tempst, P. & Pandolfi, P.P. (2006). A CK2-dependent mechanism for degradation of the PML tumor suppressor. Cell 126(2), 269283.
Sonoda, E., Sasaki, M.S., Buerstedde, J.M., Bezzubova, O., Shinohara, A., Ogawa, H., Takata, M., Yamaguchi-Iwai, Y. & Takeda, S. (1998). Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death. EMBO J 17(2), 598608.
Soria, G., Polo, S.E. & Almouzni, G. (2012). Prime, repair, restore: The active role of chromatin in the DNA damage response. Mol Cell 46(6), 722734.
Spector, D.L. & Lamond, A.I. (2011). Nuclear speckles. Cold Spring Harb Perspect Biol 3(2), a000646.
Stixová, L., Bártová, E., Matula, P., Danek, O., Legartová, S. & Kozubek, S. (2011). Heterogeneity in the kinetics of nuclear proteins and trajectories of substructures associated with heterochromatin. Epigenetics Chromatin 4, 5.
Stixová, L., Matula, P., Kozubek, S., Gombitová, A., Cmarko, D., Raška, I. & Bártová, E. (2012). Trajectories and nuclear arrangement of PML bodies are influenced by A-type lamin deficiency. Biol Cell 104(7), 418432.
Šustáčková, G., Kozubek, S., Stixová, L., Legartová, S., Matula, P., Orlova, D. & Bártová, E. (2012). Acetylation-dependent nuclear arrangement and recruitment of BMI1 protein to UV-damaged chromatin. J Cell Physiol 227(5), 18381850.
Tsukamoto, T., Hashiguchi, N., Janicki, S.M., Tumbar, T., Belmont, A.S. & Spector, D.L. (2000). Visualization of gene activity in living cells. Nat Cell Biol 2(12), 871878.
Wang, J., Shiels, C., Sasieni, P., Wu, P.J., Islam, S.A., Freemont, P.S. & Sheer, D. (2004). Promyelocytic leukemia nuclear bodies associate with transcriptionally active genomic regions. J Cell Biol 164(4), 515526.
Ward, I.M., Reina-San-Martin, B., Olaru, A., Minn, K., Tamada, K., Lau, J.S., Cascalho, M., Chen, L., Nussenzweig, A., Livak, F., Nussenzweig, M.C. & Chen, J. (2004). 53BP1 is required for class switch recombination. J Cell Biol 165(4), 459464.
Zack, G.W., Rogers, W.E. & Latt, S.A. (1977). Automatic measurement of sister chromatid exchange frequency. J Histochem Cytochem 25(7), 741753.


Hybrid Detectors Improved Time-Lapse Confocal Microscopy of PML and 53BP1 Nuclear Body Colocalization in DNA Lesions

  • Veronika Foltánková (a1), Pavel Matula (a2), Dmitry Sorokin (a2), Stanislav Kozubek (a1) and Eva Bártová (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed