Skip to main content Accessibility help
×
Home

High-Coherence Electron and Ion Bunches From Laser-Cooled Atoms

  • Ben M. Sparkes (a1), Daniel J. Thompson (a1), Andrew J. McCulloch (a1), Dene Murphy (a1), Rory W. Speirs (a1), Joshua S. J. Torrance (a1) and Robert E. Scholten (a1)...

Abstract

Cold atom electron and ion sources produce electron bunches and ion beams by photoionization of laser-cooled atoms. They offer high coherence and the potential for high brightness, with applications including ultra-fast electron-diffractive imaging of dynamic processes at the nanoscale. The effective brightness of electron sources has been limited by nonlinear divergence caused by repulsive interactions between the electrons, known as the Coulomb explosion. It has been shown that electron bunches with ellipsoidal shape and uniform density distribution have linear internal Coulomb fields, such that the Coulomb explosion can be reversed using conventional optics. Our source can create bunches shaped in three dimensions and hence in principle achieve the transverse spatial coherence and brightness needed for picosecond-diffractive imaging with nanometer resolution. Here we present results showing how the shaping capability can be used to measure the spatial coherence properties of the cold electron source. We also investigate space-charge effects with ions and generate electron bunches with durations of a few hundred picoseconds. Future development of the cold atom electron and ion source will increase the bunch charge and charge density, demonstrate reversal of Coulomb explosion, and ultimately, ultra-fast coherent electron-diffractive imaging.

Copyright

Corresponding author

* Corresponding author. scholten@unimelb.edu.au

References

Hide All
Abel, R.P., Mohapatra, A.K., Bason, M.G., Pritchard, J.D., Weatherill, K.J., Raitzsch, U. & Adams, C.S. (2009). Laser frequency stabilization to excited state transitions using electromagnetically induced transparency in a cascade system. Appl Phys Lett 94, 071107.
Bannasch, G., Killian, T.C. & Pohl, T. (2013). Strongly coupled plasmas via Rydberg blockade of cold atoms. Phys Rev Lett 110, 253003.
Bell, S.C., Junker, M., Jasperse, M., Turner, L.D., Lin, Y.-J., Spielman, I.B. & Scholten, R.E. (2010). A slow atom source using a collimated effusive oven and a single-layer variable pitch coil Zeeman slower. Rev Sci Instrum 81, 013105.
Chapman, H.N., Fromme, P., Barty, A., White, T.A., Kirian, R.A., Aquila, A., Hunter, M.S., Schulz, J., DePonte, D.P., Weierstall, U., Doak, R.B., Maia, F.R.N.C., Martin, A.V., Schlichting, I., Lomb, L., Coppola, N., Shoeman, R.L., Epp, S.W., Hartmann, R., Rolles, D., Rudenko, A., Foucar, L., Kimmel, N., Weidenspointner, G., Holl, P., Liang, M., Barthelmess, M., Caleman, C., Boutet, S., Bogan, M.J., Krzywinski, J., Bostedt, C., Bajt, S., Gumprecht, L., Rudek, B., Erk, B., Schmidt, C., Hömke, A., Reich, C., Pietschner, D., Strüder, L., Hauser, G., Gorke, H., Ullrich, J., Herrmann, S., Schaller, G., Schopper, F., Soltau, H., Kühnel, K.-U., Messerschmidt, M., Bozek, J.D., Hau-Riege, S.P., Frank, M., Hampton, C.Y., Sierra, R.G., Starodub, D., Williams, G.J., Hajdu, J., Timneanu, N., Seibert, M.M., Andreasson, J., Rocker, A., Jönsson, O., Svenda, M., Stern, S., Nass, K., Andritschke, R., Schröter, C.-D., Krasniqi, F., Bott, M., Schmidt, K.E., Wang, X., Grotjohann, I., Holton, J.M., Barends, T.R.M., Neutze, R., Marchesini, S., Fromme, R., Schorb, S., Rupp, D., Adolph, M., Gorkhover, T., Andersson, I., Hirsemann, H., Potdevin, G., Graafsma, H., Nilsson, B. & Spence, J.C. (2011). Femtosecond X-ray protein nanocrystallography. Nature 470, 7377.
Claessens, B., van der Geer, S., Taban, G., Vredenbregt, E. & Luiten, O. (2005). Ultracold electron source. Phys Rev Lett 95, 164801.
Dwyer, J.R., Hebeisen, C.T., Ernstorfer, R., Harb, M., Deyirmenjian, V.B., Jordan, R.E. & Miller, R.J.D. (2006). Femtosecond electron diffraction: “Making the molecular movie”. Phil Trans R Soc A 364, 741778.
Engelen, W.J., van der Heijden, M.A., Bakker, D.J., Vredenbregt, E.J.D. & Luiten, O.J. (2013). High-coherence electron bunches produced by femtosecond photoionization. Nat Commun 4, 1693.
Ketterle, W., Davis, K.B., Joffe, M.A., Martin, A. & Pritchard, D.E. (1993). High densities of cold atoms in a dark spontaneous-force optical trap. Phys Rev Lett 70, 22532256.
Kime, L., Fioretti, A., Bruneau, Y., Porfido, N., Fuso, F., Viteau, M., Khalili, G., Šantić, N., Gloter, A., Rasser, B., Sudraud, P., Pillet, P. & Comparat, D. (2013). High-flux monochromatic ion and electron beams based on laser-cooled atoms. Phys Rev A 88, 033424.
Knuffman, B., Steele, A.V. & McClelland, J.J. (2013). Cold atomic beam ion source for focused ion beam applications. J Appl Phys 114, 044303.
Knuffman, B., Steele, A.V., Orloff, J. & McClelland, J.J. (2011). Nanoscale focused ion beam from laser-cooled lithium atoms. J Phys 13, 103035.
Luiten, O., van der Geer, S., de Loos, M., Kiewiet, F. & van der Wiel, M. (2004). How to realize uniform three-dimensional ellipsoidal electron bunches. Phys Rev Lett 93, 94802.
McCulloch, A.J., Sheludko, D.V., Junker, M. & Scholten, R.E. (2013). High-coherence picosecond electron bunches from cold atoms. Nat Commun 4, 1692.
McCulloch, A.J., Sheludko, D.V., Saliba, S.D., Bell, S.C., Junker, M., Nugent, K.A. & Scholten, R.E. (2011). Arbitrarily shaped high-coherence electron bunches from cold atoms. Nat Phys 7, 785788.
Pinto, L.H., Holsinger, L.J. & Lamb, R.A. (1992). Influenza virus M2 protein has ion channel activity. Cell 69, 517528.
Robert-de Saint-Vincent, M., Hofmann, C.S., Schempp, H., Günter, G., Whitlock, S. & Weidemüller, M. (2013). Spontaneous avalanche ionization of a strongly blockaded Rydberg gas. Phys Rev Lett 110, 045004.
Saliba, S.D., Putkunz, C.T., Sheludko, D.V., Mcculloch, A.J., Nugent, K.A. & Scholten, R.E. (2012). Spatial coherence of electron bunches extracted from an arbitrarily shaped cold atom electron source. Opt Exp 20, 39673974.
Schotte, F., Lim, M., Jackson, T.A., Smirnov, A.V., Soman, J., Olson, J.S., Phillips, G.N., Wulff, M. & Anfinrud, P.A. (2003). Watching a protein as it functions with 150-ps time-resolved X-ray crystallography. Science 300, 19441947.
Sciaini, G. & Miller, R.J.D. (2011). Femtosecond electron diffraction: Heralding the era of atomically resolved dynamics. Rep Prog Phys 74, 096101.
Sheludko, D.V., McCulloch, A.J., Jasperse, M., Quiney, H.M. & Scholten, R.E. (2010). Non-iterative imaging of inhomogeneous cold atom clouds using phase retrieval from a single diffraction measurement. Opt Exp 18, 623626.
van der Geer, S.B., Reijnders, M.P., de Loos, M.J., Vredenbregt, E.J.D., Mutsaers, P.H.A. & Luiten, O.J. (2007). Simulated performance of an ultracold ion source. J Appl Phys 102, 094312.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed