Skip to main content Accessibility help

Grain Boundary Character Distribution of Nanocrystalline Cu Thin Films Using Stereological Analysis of Transmission Electron Microscope Orientation Maps

  • A.D. Darbal (a1), K.J. Ganesh (a2), X. Liu (a1), S.-B. Lee (a1), J. Ledonne (a1), T. Sun (a2), B. Yao (a2), A.P. Warren (a3), G.S. Rohrer (a1), A.D. Rollett (a1), P.J. Ferreira (a2), K.R. Coffey (a3) and K. Barmak (a1)...


Stereological analysis has been coupled with transmission electron microscope (TEM) orientation mapping to investigate the grain boundary character distribution in nanocrystalline copper thin films. The use of the nanosized (<5 nm) beam in the TEM for collecting spot diffraction patterns renders an order of magnitude improvement in spatial resolution compared to the analysis of electron backscatter diffraction patterns in the scanning electron microscope. Electron beam precession is used to reduce dynamical effects and increase the reliability of orientation solutions. The misorientation distribution function shows a strong misorientation texture with a peak at 60°/[111], corresponding to the Σ3 misorientation. The grain boundary plane distribution shows {111} as the most frequently occurring plane, indicating a significant population of coherent twin boundaries. This study demonstrates the use of nanoscale orientation mapping in the TEM to quantify the five-parameter grain boundary distribution in nanocrystalline materials.


Corresponding author

Corresponding author. E-mail:


Hide All

A.D. Darbal, formerly at Carnegie Mellon University, is now at NanoMEGAS USA, Tempe, AZ, USA.

K.J. Ganesh, formerly at the University of Texas at Austin, is now at Intel Corporation, Hilsboro, OR, USA.


T. Sun, formerly of the University of Central Florida, is now at Integrated System Ltd., Wanchai, Hong Kong.


B. Yao, formerly of the University of Central Florida, is now at the Pacific Northwest National Laboratory.



Hide All
Adams, B.L., Wright, S.I. & Kunze, K. (1993). Orientation imaging: The emergence of a new microscopy. Metal Trans A 24, 819831.
Bollmann, W. (1970). Crystal Defects and Crystalline Interfaces. New York: Springer Verlag.
Dingley, D. (2004). Progressive steps in the development of electron backscatter diffraction and orientation imaging microscopy. J Microsc 213, 214224.
Dingley, D.J. (2006). Orientation imaging microscopy for the transmission electron microscope. Microchimica Acta 155, 1929.
Feldman, B., Park, S., Haverty, M., Shankar, S. & Dunham, S.T. (2010). Simulation of grain boundary effects on electronic transport in metals, and detailed causes of scattering. Phys Staus Solidi B 247, 17911796.
Ganesh, K.J., Darbal, A., Rajasekhara, S., Rohrer, G.S., Barmak, K. & Ferreira, P.J. (2012). Effect of downscaling copper interconnects on the microstructure revealed by high resolution TEM-orientation-mapping. Nanotechnology 23 135702.
Ganesh, K.J., Kawasaki, M., Zhou, J.P. & Ferreira, P.J. (2010). D-STEM: A parallel electron diffraction technique applied to nanomaterials. Microsc Microanal 16, 614621.
Holm, E.A., Rohrer, G.S., Foiles, S.M., Rollett, A.D., Miller, H.M. & Olmsted, D.L. (2011). Validating computed grain boundary energies in fcc metals using the grain boundary character distribution. Acta Mater 59, 52505256.
Li, J., Dillon, S.J. & Rohrer, G.S. (2009). Relative grain boundary area and energy distributions in nickel. Acta Mater 57, 43044311.
Liu, H.H., Schmidt, S., Poulsen, H.F., Godfrey, A., Liu, Z.Q., Sharon, J.A. & Huang, X. (2011). Three-dimensional orientation mapping in the transmission electron microscope. Science 332, 833834.
Lu, K., Lu, L. & Suresh, S. (2009). Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324, 349352.
Lu, L., Shen, Y., Chen, X., Qian, L. & Lu, K. (2004). Ultrahigh strength and high electrical conductivity in copper. Science 304, 422426.
Mackenzie, J.K., Moore, A.J.W. & Nichols, J.F. (1962). Bonds broken at atomically flat crystal surfaces—I: Face-centred and body-centred cubic crystals. J Phys Chem Solids 23, 185193.
Oleynikov, P., Hovmuller, S. & Zou, X.D. (2007). Precession electron diffraction: Observed and calculated intensities. Ultramicroscopy 107, 523533.
Olmsted, D.L., Foiles, S.M. & Holm, E.A. (2009). Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy. Acta Mater 57, 36943703.
Portillo, J., Rauch, E.F., Nicolopoulos, S., Gemmi, M. & Bultreys, D. (2010). Precession electron diffraction assisted orientation mapping in the transmission electron microscope. Mater Sci Forum 644, 17.
Randle, V. (1996). The Role of Coincident Site Lattice in Grain Boundary Engineering. London: Cambridge University Press.
Randle, V., Rohrer, G.S., Miller, H.M., Coleman, M. & Owen, G.T. (2008). Five-parameter grain boundary distribution of commercially grain boundary engineered nickel and copper. Acta Mater 56, 23632373.
Rauch, E.F. & Duft, A. (2005). Orientation maps derived from TEM diffraction patterns collected with an external CCD camera. Mater Sci Forum 495497, 197202.
Rauch, E.F. & Dupuy, L. (2005). Rapid diffraction patterns identification through template matching. Arch Metall Mater 50, 8789.
Rauch, E.F. & Veron, M. (2005). Coupled microstructural observations and local texture measurements with an automated crystallographic orientation mapping tool attached to a tem. Materialwiss Werkst 36, 552556.
Rohrer, G.S., El Dasher, B.S., Miller, H.M., Rollett, A.D. & Saylor, D.M. (2004a). Distribution of grain boundary planes at coincident site lattice misorientations. Mat Res Soc Symp Proc 819, N7.2.
Rohrer, G.S., Holm, E.A., Rollett, A.D., Foiles, S.M., Li, J. & Olmsted, D.L. (2010a). Comparing calculated and measured grain boundary energies in nickel. Acta Mater 58, 50635069.
Rohrer, G.S., Li, J., Lee, S., Rollett, A.D., Groeber, M. & Uchic, M.D. (2010b). Deriving grain boundary character distributions and relative grain boundary energies from three-dimensional EBSD data. Mater Sci Technol 26, 661669.
Rohrer, G.S., Saylor, D.M., Dasher, B.E., Adams, B.L., Rollett, A.D. & Wynblatt, P. (2004b). The distribution of internal interfaces in polycrystals. Z Metallk 95, 197214.
Rouvimov, S., Moeck, P., Rauch, E.F., Maniette, Y. & Bultreys, D. (2008). Crystallographic characterization of polycrystalline materials: High resolution automated crystallite orientation. Microsc Microanal 14, 768769.
Saylor, D.M., Dasher, B.S., Adams, B.L. & Rohrer, G.S. (2004a). Measuring the five-parameter grain-boundary distribution from observations of planar sections. Metal Mater Trans A 35, 19811989.
Saylor, D.M., Dasher, B.S.E., Rollett, A.D. & Rohrer, G.S. (2004b). Distribution of grain boundaries in aluminium as a function of five macroscopic parameters. Acta Mater 52, 36493655.
Saylor, D.M., El, D.B., Pang, Y., Miller, H.M., Wynblatt, P., Rollett, A.D. & Rohrer, G.S. (2004c). Habits of grains in dense polycrystalline solids. J Am Ceram Soc 87, 724726.
Sun, T., Yao, B., Warren, A.P., Barmak, K., Toney, M.F., Peale, R.E. & Coffey, K.R. (2010). Surface and grain-boundary scattering in nanometric Cu films. Phys Rev B 81.
Sun, T., Yao, B., Warren, A.P., Kumar, V., Roberts, S., Barmak, K. & Coffey, K.R. (2008). Classical size effect in oxide-encapsulated Cu thin films: Impact of grain boundaries versus surfaces on resistivity. J Vac Sci Technol A 26, 605609.
Vincent, R. & Midgley, P.A. (1994). Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy 53, 271282.
Williams, D.B. & Carter, C.B. (2009). Transmission Electron Microscopy: A Textbook for Materials Science, pp. 167168. New York: Springer.
Wright, S.I. & Larsen, R.J. (2002). Extracting twins from orientation imaging microscopy scan data. J Microsc 205, 245252.
Yao, B., Petrova, R.V., Vanfleet, R.R. & Coffey, K.R. (2006). A modified back-etch method for preparation of plan-view high-resolution transmission electron microscopy samples. J Electron Microsc 57, 4752.
Yao, B., Sun, T., Warren, A., Heinrich, H., Barmak, K. & Coffey, K.R. (2010). High contrast hollow-cone dark field transmission electron microscopy for nanocrystalline grain size quantification. Micron 41, 177182.
Zaefferer, S. (2007). On the formation mechanisms, spatial resolution and intensity of backscatter Kikuchi patterns. Ultramicroscopy 107, 254266.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed