Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T22:38:33.671Z Has data issue: false hasContentIssue false

Galectin-3 Expression in Pancreatic Cell Lines Under Distinct Autophagy-Inducing Stimulus

Published online by Cambridge University Press:  27 October 2020

Antônio Felix da Silva Filho
Affiliation:
Immunomodulation and New Therapy Approaches Laboratory (LINAT), Biochemistry Department, Federal University of Pernambuco (UFPE), Cidade Universitária, Recife, Pernambuco 50670-901, Brazil
Lizandra Maia de Sousa
Affiliation:
Laboratory of Cytochemistry and Immunocytochemistry, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, São Paulo 13083-970, Brazil
Silvio Roberto Consonni
Affiliation:
Laboratory of Cytochemistry and Immunocytochemistry, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, São Paulo 13083-970, Brazil
Maira Galdino da Rocha Pitta
Affiliation:
Immunomodulation and New Therapy Approaches Laboratory (LINAT), Biochemistry Department, Federal University of Pernambuco (UFPE), Cidade Universitária, Recife, Pernambuco 50670-901, Brazil
Hernandes Faustino Carvalho
Affiliation:
Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, São Paulo 13083-970, Brazil
Moacyr Jesus Barreto de Melo Rêgo*
Affiliation:
Immunomodulation and New Therapy Approaches Laboratory (LINAT), Biochemistry Department, Federal University of Pernambuco (UFPE), Cidade Universitária, Recife, Pernambuco 50670-901, Brazil Laboratório de Imunomodulação e Novas Abordagens Terapêuticas (LINAT), Therapeutic Innovation Research Center– Suelly Galdino (NUPIT-SG), Biochemistry Department, Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, Pernambuco 50670-901, Brazil
*
*Author for correspondence: Moacyr Jesus Barreto de Melo Rêgo, E-mail: moacyr.rego@ufpe.br
Get access

Abstract

Hypoxia and nutrient deprivation are responsible for inducing malignant behavior in neoplastic cells. In these conditions, metabolic stress leads the cells to enhance their autophagic flux and to activate key molecules for homeostasis maintenance. Galectin-3 (Gal-3) is upregulated in pancreatic cancer and it is activated under the hypoxic atmosphere. We aimed to analyze the most effective autophagic-inducing conditions in pancreatic ductal adenocarcinoma cells and the effect exerted under these conditions in association with hypoxia on the Gal-3 expression. Gal-3 and the microtubule-associated protein light chain 3 beta (LC3) were accessed through western blot and immunofluorescence. Degradative vacuole quantification was analyzed by transmission electronic microscopy, and inhibition of Gal-3 was performed using siRNA. According to the analyses, the most effective conditions in the inducement of autophagy for PANC-1 and MIA PaCa-2 cells were nutritional deprivation and complete amino acid/glucose deprivation, respectively. PANC-1 cells presented higher Gal-3 when they were submitted to 24 h of nutritional deprivation alone and simultaneously nutritional and oxygen deprivation. Inhibition of Gal-3 causes a decrease of LC3 levels in all experimental conditions. These results confirm that Gal-3 is modulated by microenvironment factors and the possibility of Gal-3 participating in an adaptive response from PDAC cells to extreme conditions.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adhauliya, N, Kalappanavar, AN, Ali, IM & Annigeri, RG (2016). Autophagy: A boon or bane in oral cancer. Oral Oncol 61, 120126.CrossRefGoogle ScholarPubMed
Arnoys, EJ, Ackerman, CM & Wang, JL (2015). Nucleocytoplasmic shuttling of galectin-3. Methods Mol Biol 1207, 465483.CrossRefGoogle ScholarPubMed
Avalos, Y, Canales, J, Bravo-Sagua, R, Criollo, A, Lavandero, S & Quest, AFG (2014). Tumor suppression and promotion by autophagy. BioMed Res Int 2014, 603980.CrossRefGoogle ScholarPubMed
Balasubramanian, MN, Butterworth, EA & Kilberg, MS (2013). Asparagine synthetase: Regulation by cell stress and involvement in tumor biology. Am J Physiol Endocrinol Metab 304, E789E799.CrossRefGoogle ScholarPubMed
Balsano, R, Tommasi, C & Garajova, I (2019). State of the art for metastatic pancreatic cancer treatment: Where are we now? Anticancer Res 39, 34053412.CrossRefGoogle ScholarPubMed
Barton, LA & Ren, J (2018). Pancreatic neoplasms and autophagy. Curr Drug Targets 19, 10181023.CrossRefGoogle ScholarPubMed
Beatty, WL, Rhoades, ER, Hsu, DK, Liu, F-T & Russell, DG (2002). Association of a macrophage galactoside-binding protein with Mycobacterium-containing phagosomes. Cell Microbiol 4, 167176.CrossRefGoogle ScholarPubMed
Cardoso, ACF, Andrade, LNdS, Bustos, SO & Chammas, R (2016). Galectin-3 determines tumor cell adaptive strategies in stressed tumor microenvironments. Front Oncol 6, 127.CrossRefGoogle ScholarPubMed
Chauhan, S, Kumar, S, Jain, A, Ponpuak, M, Mudd, MH, Kimura, T, Choi, SW, Peters, R, Mandell, M, Bruun, J-A, Johansen, T & Deretic, V (2016). TRIMs and galectins globally cooperate and TRIM16 and Galectin-3 co-direct autophagy in endomembrane damage homeostasis. Dev Cell 39, 1327.CrossRefGoogle ScholarPubMed
Choi, J, Kim, H, Bae, YK & Cheong, H (2017). REP1 modulates autophagy and macropinocytosis to enhance cancer cell survival. Int J Mol Sci 18, 1866.CrossRefGoogle ScholarPubMed
Coppin, L, Benomar, K, Corfiotti, F, Cattan, S, Renaud, F, Lapere, C, Leteurtre, E, Vantyghem, M-C, Truant, S & Pigny, P (2016). CA-125, but not galectin-3, complements CA 19-9 for discriminating ductal adenocarcinoma versus non-malignant pancreatic diseases. Pancreatology 16, 115120.CrossRefGoogle Scholar
da Silva Filho, AF, Tavares, LB, Pitta, MGR, Beltrão, EIC & Rêgo, MJBM (2020). Galectin-3 is modulated in pancreatic cancer cells under hypoxia and nutrient deprivation. Biol Chem 401 (10), 11531165.CrossRefGoogle ScholarPubMed
de Oliveira, JT, Ribeiro, C, Barros, R, Gomes, C, de Matos, AJ, Reis, CA, Rutteman, GR & Gärtner, F (2015). Hypoxia up-regulates Galectin-3 in mammary tumor progression and metastasis. PLoS ONE 10, e0134458.CrossRefGoogle ScholarPubMed
Doverhag, C, Hedtjarn, M, Poirier, F, Mallard, C, Hagberg, H, Karlsson, A & Savman, K (2010). Galectin-3 contributes to neonatal hypoxic-ischemic brain injury. Neurobiol Dis 38, 3646.CrossRefGoogle ScholarPubMed
Eskelinen, E-L (2008). Fine structure of the autophagosome. Methods Mol Biol 445, 1128.CrossRefGoogle ScholarPubMed
Faubert, B, Solmonson, A & DeBerardinis, RJ (2020). Metabolic reprogramming and cancer progression. Science 368, e5473.CrossRefGoogle ScholarPubMed
Fujita, N, Morita, E, Itoh, T, Tanaka, A, Nakaoka, M, Osada, Y, Umemoto, T, Saitoh, T, Nakatogawa, H, Kobayashi, S, Haraguchi, T, Guan, J-L, Iwai, K, Tokunaga, F, Saito, K, Ishibashi, K, Akira, S, Fukuda, M, Noda, T & Yoshimori, T (2013). Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin. J Cell Biol 203, 115128.CrossRefGoogle ScholarPubMed
Görgülü, K, Diakopoulos, KN, Kaya-Aksoy, E, Ciecielski, KJ, Ai, J, Lesina, M & Algül, H (2020). The role of autophagy in pancreatic cancer: From bench to the dark bedside. Cells 9, 1063.CrossRefGoogle Scholar
Greco, E, Basso, D, Fogar, P, Mazza, S, Navaglia, F, Zambon, CF, Falda, A, Pedrazzoli, S, Ancona, E & Plebani, M (2005). Pancreatic cancer cells invasiveness is mainly affected by interleukin-1beta not by transforming growth factor-beta1. Int J Biol Markers 20, 235241.CrossRefGoogle Scholar
Holloway, SE, Beck, AW, Shivakumar, L, Shih, J, Fleming, JB & Brekken, RA (2006). Selective blockade of vascular endothelial growth factor receptor 2 with an antibody against tumor-derived vascular endothelial growth factor controls the growth of human pancreatic adenocarcinoma xenografts. Ann Surg Oncol 13, 11451155.CrossRefGoogle ScholarPubMed
Huang, T, Song, X, Yang, Y, Wan, X, Alvarez, AA, Sastry, N, Feng, H, Hu, B & Cheng, S-Y (2018). Autophagy and hallmarks of cancer. Crit Rev Oncol 23, 247267.CrossRefGoogle ScholarPubMed
Ikemori, RY, Machado, CML, Furuzawa, KM, Nonogaki, S, Osinaga, E, Umezawa, K, de Carvalho, MA, Verinaud, L & Chammas, R (2014). Galectin-3 up-regulation in hypoxic and nutrient deprived microenvironments promotes cell survival. PLoS ONE 9, e111592.CrossRefGoogle ScholarPubMed
Izuishi, K, Kato, K, Ogura, T, Kinoshita, T & Esumi, H (2000). Remarkable tolerance of tumor cells to nutrient deprivation: Possible new biochemical target for cancer therapy. Cancer Res 60, 62016207.Google ScholarPubMed
Kataoka, Y, Ohshio, Y, Teramoto, K, Igarashi, T, Asai, T & Hanaoka, J (2019). Hypoxiainduced galectin3 enhances RhoA function to activate the motility of tumor cells in nonsmall cell lung cancer. Oncol Rep 41, 853862.Google Scholar
Kim, SE, Park, H-J, Jeong, HK, Kim, M-J, Kim, M, Bae, O-N & Baek, S-H (2015). Autophagy sustains the survival of human pancreatic cancer PANC-1 cells under extreme nutrient deprivation conditions. Biochem Biophys Res Commun 463, 205210.CrossRefGoogle ScholarPubMed
Kumar, S, Chauhan, S, Jain, A, Ponpuak, M, Choi, SW, Mudd, M, Peters, R, Mandell, MA, Johansen, T & Deretic, V (2017). Galectins and TRIMs directly interact and orchestrate autophagicresponse to endomembrane damage. Autophagy 13, 10861087.CrossRefGoogle ScholarPubMed
Levy, JMM, Towers, CG & Thorburn, A (2017). Targeting autophagy in cancer. Nat Rev Genet 17, 528542.Google ScholarPubMed
Li, M, Xie, H, Liu, Y, Xia, C, Cun, X, Long, Y, Chen, X, Deng, M, Guo, R, Zhang, Z & He, Q (2019). Knockdown of hypoxia-inducible factor-1 alpha by tumor targeted delivery of CRISPR/Cas9 system suppressed the metastasis of pancreatic cancer. J Control Release 304, 204215.CrossRefGoogle ScholarPubMed
Li, Y-S, Li, X-T, Yu, L-G, Wang, L, Shi, Z-Y & Guo, X-L (2020). Roles of galectin-3 in metabolic disorders and tumor cell metabolism. Int J Biol Macromol 142, 463473.CrossRefGoogle ScholarPubMed
Lieber, M, Mazzetta, J, Nelson-Rees, W, Kaplan, M & Todaro, G (1975). Establishment of a continuous tumor-cell line (panc-1) from a human carcinoma of the exocrine pancreas. Int J Cancer 15, 741747.CrossRefGoogle ScholarPubMed
Luo, B & Lee, AS (2013). The critical roles of endoplasmic reticulum chaperones and unfolded protein response in tumorigenesis and anticancer therapies. Oncogene 32, 805818.CrossRefGoogle ScholarPubMed
Luo, J, Guo, P, Matsuda, K, Truong, N, Lee, A, Chun, C, Cheng, SY & Korc, M (2001). Pancreatic cancer cell-derived vascular endothelial growth factor is biologically active in vitro and enhances tumorigenicity in vivo. Int J Cancer 92, 361369.CrossRefGoogle ScholarPubMed
Madden, E, Logue, SE, Healy, SJ, Manie, S & Samali, A (2019). The role of the unfolded protein response in cancer progression: From oncogenesis to chemoresistance. Biol Cell 111, 117.CrossRefGoogle ScholarPubMed
Maejima, I, Takahashi, A, Omori, H, Kimura, T, Takabatake, Y, Saitoh, T, Yamamoto, A, Hamasaki, M, Noda, T, Isaka, Y & Yoshimori, T (2013). Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO J 32, 23362347.CrossRefGoogle ScholarPubMed
Maertin, S, Elperin, JM, Lotshaw, E, Sendler, M, Speakman, SD, Takakura, K, Reicher, BM, Mareninova, OA, Grippo, PJ, Mayerle, J, Lerch, MM & Gukovskaya, AS (2017). Roles of autophagy and metabolism in pancreatic cancer cell adaptation to environmental challenges. Am J Physiol Gastrointest Liver Physiol 313, G524G536..CrossRefGoogle ScholarPubMed
Marinkovic, M, Sprung, M, Buljubasic, M & Novak, I (2018). Autophagy modulation in cancer: Current knowledge on action and therapy. Oxid Med Cell Longev 2018, 8023821.CrossRefGoogle ScholarPubMed
Mazza, T, Fusilli, C, Saracino, C, Mazzoccoli, G, Tavano, F, Vinciguerra, M & Pazienza, V (2015). Functional impact of autophagy-related genes on the homeostasis and dynamics of pancreatic cancer cell lines. IEEE/ACM Trans Comput Biol Bioinform 12, 667678.CrossRefGoogle ScholarPubMed
Melstrom, LG, Salabat, MR, Ding, X-Z, Strouch, MJ, Grippo, PJ, Mirzoeva, S, Pelling, JC & Bentrem, DJ (2011). Apigenin down-regulates the hypoxia response genes: HIF-1α, GLUT-1, and VEGF in human pancreatic cancer cells. J Surg Res 167, 173181.CrossRefGoogle ScholarPubMed
Meng, Q, Xu, J, Liang, C, Liu, J, Hua, J, Zhang, Y, Ni, Q, Shi, S & Yu, X (2018). GPx1 is involved in the induction of protective autophagy in pancreatic cancer cells in response to glucose deprivation. Cell Death Dis 9, 1187.CrossRefGoogle ScholarPubMed
Miknyoczki, SJ, Chang, H, Klein-Szanto, A, Dionne, CA & Ruggeri, BA (1999). The Trk tyrosine kinase inhibitor CEP-701 (KT-5555) exhibits significant antitumor efficacy in preclinical xenograft models of human pancreatic ductal adenocarcinoma. Clin Cancer Res 5, 22052212.Google ScholarPubMed
Mizrahi, JD, Surana, R, Valle, JW & Shroff, RT (2020). Pancreatic cancer. Lancet 395, 20082020.CrossRefGoogle ScholarPubMed
Moore, PS, Sipos, B, Orlandini, S, Sorio, C, Real, FX, Lemoine, NR, Gress, T, Bassi, C, Kloppel, G, Kalthoff, H, Ungefroren, H, Lohr, M & Scarpa, A (2001). Genetic profile of 22 pancreatic carcinoma cell lines. Analysis of K-ras, p53, p16 and DPC4/Smad4. Virchows Arch 439, 798802.CrossRefGoogle ScholarPubMed
Mpekris, F, Papageorgis, P, Polydorou, C, Voutouri, C, Kalli, M, Pirentis, AP & Stylianopoulos, T (2017). Sonic-hedgehog pathway inhibition normalizes desmoplastic tumor microenvironment to improve chemo- and nanotherapy. J Control Release 261, 105112.CrossRefGoogle ScholarPubMed
New, M, Van Acker, T, Long, JS, Sakamaki, J-I, Ryan, KM & Tooze, SA (2017). Molecular pathways controlling autophagy in pancreatic cancer. Front Oncol 7, 28.CrossRefGoogle ScholarPubMed
Parks, SK, Cormerais, Y & Pouysségur, J (2017). Hypoxia and cellular metabolism in tumour pathophysiology. J Physiol 595, 24392450.CrossRefGoogle ScholarPubMed
Paz, I, Sachse, M, Dupont, N, Mounier, J, Cederfur, C, Enninga, J, Leffler, H, Poirier, F, Prevost, M-C, Lafont, F & Sansonetti, P (2010). Galectin-3, a marker for vacuole lysis by invasive pathogens. Cell Microbiol 12, 530544.CrossRefGoogle ScholarPubMed
Pei, C, Zhang, Y, Wang, P, Zhang, B, Fang, L, Liu, B & Meng, S (2019). Berberine alleviatesoxidized low-density lipoproteininduced macrophage activation bydownregulating galectin-3 via the NF-κB and AMPK signaling pathways.Phytother Res 33, 294308.CrossRefGoogle Scholar
Rausch, V, Liu, L, Apel, A, Rettig, T, Gladkich, J, Labsch, S, Kallifatidis, G, Kaczorowski, A, Groth, A, Gross, W, Gebhard, MM, Schemmer, P, Werner, J, Salnikov, AV, Zentgraf, H, Buchler, MW & Herr, I (2012). Autophagy mediates survival of pancreatic tumour-initiating cells in a hypoxic microenvironment. J Pathol 227, 325335.CrossRefGoogle Scholar
Ravanan, P, Srikumar, IF & Talwar, P (2017). Autophagy: The spotlight for cellular stress responses. Life Sci 188, 5367.CrossRefGoogle ScholarPubMed
Rouschop, KMA & Wouters, BG (2009). Regulation of autophagy through multiple independent hypoxic signaling pathways. Curr Mol Med 9, 417424.CrossRefGoogle ScholarPubMed
Santana-Codina, N, Mancias, JD & Kimmelman, AC (2017). The role of autophagy in cancer. Ann Rev Cancer Biol 1, 1939.CrossRefGoogle ScholarPubMed
Schaffert, C, Pour, PM & Chaney, WG (1998). Localization of galectin-3 in normal and diseased pancreatic tissue. Int J Pancreatol 23, 19.CrossRefGoogle ScholarPubMed
Schunemann, HJ, Hill, SR, Kakad, M, Bellamy, R, Uyeki, TM, Hayden, FG, Yazdanpanah, Y, Beigel, J, Chotpitayasunondh, T, Del Mar, C, Farrar, J, Tran, TH, Ozbay, B, Sugaya, N, Fukuda, K, Shindo, N, Stockman, L, Vist, GE, Croisier, A, Nagjdaliyev, A, Roth, C, Thomson, G, Zucker, H & Oxman, AD (2007). WHO Rapid Advice Guidelines for pharmacological management of sporadic human infection with avian influenza A (H5N1) virus. Lancet Infect Dis 7, 2131.CrossRefGoogle ScholarPubMed
Song, S, Ji, B, Ramachandran, V, Wang, H, Hafley, M, Logsdon, C & Bresalier, RS (2012). Overexpressed galectin-3 in pancreatic cancer induces cell proliferation and invasion by binding Ras and activating Ras signaling. PLoS ONE 7, e42699.CrossRefGoogle ScholarPubMed
Suklabaidya, S, Dash, P, Das, B, Suresh, V, Sasmal, PK & Senapati, S (2018). Experimental models of pancreatic cancer desmoplasia. Lab Invest 98, 2740.CrossRefGoogle ScholarPubMed
Sun, C, Yamato, T, Furukawa, T, Ohnishi, Y, Kijima, H & Horii, A (2001). Characterization of the mutations of the K-ras, p53, p16, and SMAD4 genes in 15 human pancreatic cancer cell lines. Oncol Rep 8, 8992.Google ScholarPubMed
Thomas, L & Pasquini, LA (2019). Extracellular Galectin-3 induces accelerated oligodendroglial differentiation through changes in signaling pathways and cytoskeleton dynamics. Mol Neurobiol 56, 336349.CrossRefGoogle ScholarPubMed
Vasagiri, N & Kutala, VK (2014). Structure, function, and epigenetic regulation of BNIP3: A pathophysiological relevance. Mol Biol Rep 41, 77057714.CrossRefGoogle ScholarPubMed
Yla-Anttila, P, Vihinen, H, Jokitalo, E & Eskelinen, E-L (2009). Monitoring autophagy by electron microscopy in Mammalian cells. Methods Enzymol 452, 143164.CrossRefGoogle ScholarPubMed
Yunis, AA, Arimura, GK & Russin, DJ (1977). Human pancreatic carcinoma (MIA PaCa-2) in continuous culture: Sensitivity to asparaginase. Int J Cancer 19, 128135.CrossRefGoogle ScholarPubMed
Zeng, Y, Danielson, KG, Albert, TJ, Shapiro, IM & Risbud, MV (2007). HIF-1 alpha is a regulator of galectin-3 expression in the intervertebral disc. J Bone Miner Res 22, 18511861.CrossRefGoogle ScholarPubMed
Zhang, H, Bosch-Marce, M, Shimoda, LA, Tan, YS, Baek, JH, Wesley, JB, Gonzalez, FJ & Semenza, GL (2008). Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283, 1089210903.CrossRefGoogle ScholarPubMed
Zheng, J, Lu, W, Wang, C, Xing, Y, Chen, X & Ai, Z (2017). Galectin-3 induced by hypoxia promotes cell migration in thyroid cancer cells. Oncotarget 8, 101475101488.CrossRefGoogle ScholarPubMed