Skip to main content Accessibility help

Failure Evaluation of a SiC/SiC Ceramic Matrix Composite During In-Situ Loading Using Micro X-ray Computed Tomography

  • John Thornton (a1), Benedicta D. Arhatari (a2), Mitchell Sesso (a3), Chris Wood (a1), Matthew Zonneveldt (a1), Sun Yung Kim (a3), Justin A. Kimpton (a4) and Chris Hall (a4)...


In this study, we have examined ceramic matrix composites with silicon carbide fibers in a melt-infiltrated silicon carbide matrix (SiC/SiC). We subjected samples to tensile loads while collecting micro X-ray computed tomography images. The results showed the expected crack slowing mechanisms and lower resistance to crack propagation where the fibers ran parallel and perpendicular to the applied load respectively. Cracking was shown to initiate not only from the surface but also from silicon inclusions. Post heat-treated samples showed longer fiber pull-out than the pristine samples, which was incompatible with previously proposed mechanisms. Evidence for oxidation was identified and new mechanisms based on oxidation or an oxidation assisted boron nitride phase transformation was therefore proposed to explain the long pull-out. The role of oxidation emphasizes the necessity of applying oxidation resistant coatings on SiC/SiC.


Corresponding author

*Author for correspondence: Benedicta D. Arhatari, E-mail:


Hide All
Arhatari, BD, Zonneveldt, M, Thornton, J & Abbey, B (2017). Local structural damage evaluation of a C/C–SiC ceramic matrix composite. Microsc Microanal 23(3), 518526.
Baimpas, N, Xie, M, Song, X, Hofmann, F, Abbey, B, Marrow, J, Mostafavi, M, Mi, J & Korsunsky, AM (2014). Rich tomography techniques for the analysis of microstructure and deformation. Int J Comput Methods 11(03), 1343006 (1343018 pages).
Bale, HA, Haboub, A, MacDowell, AA, Nasiatka, JR, Parkinson, DY, Cox, BN, Marshall, DB & Ritchie, RO (2013). Real-time quantitative imaging of failure events in materials under load at temperatures above 1,600°C. Nat Mater 12(1), 4046.
Bertrand, R, Caty, O, Mazars, V, Denneulin, S, Weisbecker, P, Pailhes, J, Camus, G & Rebillat, F (2017). In-situ tensile tests under SEM and X-ray computed micro-tomography aimed at studying a self-healing matrix composite submitted to different thermomechanical cycles. J Eur Ceram Soc 37(10), 34713474.
Bingham, PR, Santos-Villalobos, H, Lavrik, N, Bilheux, H & Gregor, J (2014) Magnified neutron radiography with coded sources. In IS&T/SPIE Electronic Imaging, Bouman, CA and Sauer, KD (Eds.), pp. 10. SPIE.
Borom, MP, Hillig, WB, Singh, RN, Morrison, WA & Interrante, LV (1991). Fiber-containing Composite. Schenectady, NY, USA: General Electric Company.
Choi, SR (2008). Foreign object damage phenomenon by steel ball projectiles in a SiC/SiC ceramic matrix composite at ambient and elevated temperatures. J Am Ceram Soc 91(9), 29632968.
Corman, G, Upadhyay, R, Sinha, S, Sweeney, S, Wang, S, Biller, S & Luthra, K (2016). General electric company: Selected applications of ceramics and composite materials. In Materials Research for Manufacturing, Madsen, L and Svedberg, E (Eds.), Springer Series in Materials Science 224, pp. 5991. Switzerland: Springer International Publishing.
Corman, GS, Dean, AJ, Brabetz, S, Brun, MK, Luthra, KL, Tognarelli, L & Pecchioli, M (2002). Rig and engine testing of melt infiltrated ceramic composites for combustor and shroud applications. J Eng Gas Turbines Power 124(3), 459464.
Croom, BP, Xu, P, Lahoda, EJ, Deck, CP & Li, X (2017). Quantifying the three-dimensional damage and stress redistribution mechanisms of braided SiC/SiC composites by in situ volumetric digital image correlation. Scr Mater 130, 238241.
CXRO (1995). X-Ray Interactions with Matter. The center for X-ray optics (CXRO) at Lawrence Berkeley National Laboratory. Available at
Czabaj, MW, Riccio, ML & Whitacre, WW (2014). Numerical reconstruction of graphite/epoxy composite microstructure based on sub-micron resolution X-ray computed tomography. Compos Sci Technol 105, 174182.
Frazer, D, Abad, MD, Krumwiede, D, Back, CA, Khalifa, HE, Deck, CP & Hosemann, P (2015). Localized mechanical property assessment of SiC/SiC composite materials. Composites, Part A 70, 93101.
Genet, M, Marcin, L, Baranger, E, Cluzel, C, Ladevèze, P & Mouret, A (2012). Computational prediction of the lifetime of self-healing CMC structures. Composites, Part A 43(2), 294303.
Hall, C, Hausermann, D, Maksimenko, A, Astolfo, A, Siu, K, Pearson, J & Stevenson, A (2013). Detectors for the imaging and medical beam line at the Australian Synchrotron. J Instrum 8(06), C06011.
Heidenreich, B (2008). Melt infiltration process. In Ceramic Matrix Composites, Krenkel, W (Ed.), pp. 113139. Weinheim, Germany: Wiley-VCH.
Hess, KU, Flaws, A, Mühlbauer, MJ, Schillinger, B, Franz, A, Schulz, M, Calzada, E, Dingwell, DB & Bente, K (2011). Advances in high-resolution neutron computed tomography: Adapted to the earth sciences. Geosphere 7(6), 12941302.
Jacobson, NS, Morscher, GN, Bryant, DR & Tressler, RE (1999). High-temperature oxidation of boron nitride: II, boron nitride layers in composites. J Am Ceram Soc 82(6), 14731482.
Katoh, Y, Kotani, M, Kohyama, A, Montorsi, M, Salvo, M & Ferraris, M (2000). Microstructure and mechanical properties of low-activation glass-ceramic joining and coating for SiC/SiC composites. J Nucl Mater 283–287, 12621266.
Kim, TT, Mall, S, Zawada, LP & Jefferson, G (2010). Simultaneous fatigue and combustion exposure of a SiC/SiC ceramic matrix composite. J Compos Mater 44(25), 29913016.
Koch, D (2008). Microstructural modeling and thermomechanical properties. In Ceramic Matrix Composites, Krenkel, W (Ed.), pp. 231259. Weinheim, Germany: Wiley-VCH.
Krenkel, W (2008). Ceramic Matrix Composites. Weinheim, Germany: Wiley-VCH.
Krenkel, W, Heidenreich, B & Renz, R (2002). C/C-SiC composites for advanced friction systems. Adv Eng Mater 4(7), 427436.
Lide, DR (1997). Handbook of Chemistry and Physics. Boca Raton, FL, USA: CRC Press.
Maire, E & Withers, PJ (2014). Quantitative X-ray tomography. Int Mater Rev 59(1), 143.
Mazars, V, Caty, O, Couégnat, G, Bouterf, A, Roux, S, Denneulin, S, Pailhès, J & Vignoles, GL (2017). Damage investigation and modeling of 3D woven ceramic matrix composites from X-ray tomography in-situ tensile tests. Acta Mater 140, 130139.
Nasiri, NA, Patra, N, Ni, N, Jayaseelan, DD & Lee, WE (2016). Oxidation behaviour of SiC/SiC ceramic matrix composites in air. J Eur Ceram Soc 36(14), 32933302.
NIST (2005). Compute Neutron Attenuation and Activation. NIST Center for Neutron Research. Available at
Paganin, D, Mayo, S, Gureyev, TE, Miller, PR & Wilkins, SW (2002). Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J Microsc 206, 3340.
Roy, J, Chandra, S, Das, S & Maitra, S (2014). Oxidation behaviour of silicon carbide—A review. Rev Adv Mater Sci 38, 2939.
Saucedo-Mora, L, Lowe, T, Zhao, S, Lee, PD, Mummery, PM & Marrow, TJ (2016). In situ observation of mechanical damage within a SiC-SiC ceramic matrix composite. J Nucl Mater 481, 1323.
Sears, VF (1992). Neutron scattering lengths and cross-sections. Neutron News 3(3), 2637.
Sloof, WG, Pei, R, McDonald, SA, Fife, JL, Shen, L, Boatemaa, L, Farle, A-S, Yan, K, Zhang, X, van der Zwaag, S, Lee, PD & Withers, PJ (2016). Repeated crack healing in MAX-phase ceramics revealed by 4D in situ synchrotron X-ray tomographic microscopy. Sci Rep 6, 23040.
Stevenson, AW, Crosbie, JC, Hall, CJ, Häusermann, D, Livingstone, J & Lye, JE (2017). Quantitative characterization of the X-ray beam at the Australian Synchrotron Imaging and Medical Beamline (IMBL). J Synchrotron Radiat 24(1), 110141.
Tremsin, AS, McPhate, JB, Vallerga, JV, Siegmund, OHW, Feller, WB, Lehmann, E, Butler, LG & Dawson, M (2011). High-resolution neutron microtomography with noiseless neutron counting detector. Nucl Instrum Methods Phys Res, Sect A 652(1), 400403.
van Roode, M (2009). Ceramic Gas turbine development: Need for a 10 Year plan. J Eng Gas Turbines Power 132(1), 011301–011301–011308.
Wolfrum, A-K, Matthey, B, Michaelis, A & Herrmann, M (2018). On the stability of c-BN-reinforcing particles in ceramic matrix materials. Materials (Basel, Switzerland) 11(2), 255.
Zhao, JC & Westbrook, JH (2003). Ultrahigh-temperature materials for jet engines. MRS Bull 28(9), 622630.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed