Skip to main content Accessibility help
×
Home

Experimental Method to Determine the Absolute Efficiency Curve of a Wavelength Dispersive Spectrometer

  • Jorge Trincavelli (a1) (a2), Silvina Limandri (a1) (a2), Alejo Carreras (a2) (a3) and Rita Bonetto (a2) (a4)

Abstract

A method for the experimental determination of the absolute efficiency of wavelength dispersive spectrometers was developed, based on the comparison of spectra measured with a wavelength dispersive system and with an energy dispersive spectrometer. The aim of studying this parameter arises because its knowledge is necessary to perform standardless analysis. A simple analytical expression was obtained for the efficiency curve for three crystals (TAP, PET, and LiF) of the spectrometer used, within an energy range from 0.77 to 10.83 keV. Although this expression is particular for the system used in this work, the method may be extended to other spectrometers and crystals for electron probe microanalysis and X-ray fluorescence.

Copyright

Corresponding author

Corresponding author. E-mail: jorge@quechua.fis.uncor.edu

References

Hide All
Bonetto, R., Carreras, A., Trincavelli, J. & Castellano, G. (2004). L-shell radiative transition rates by selective synchrotron ionization. J Phys B: At Mol Opt Phys 37, 14771488.
Bonetto, R., Castellano, G. & Trincavelli, J. (2001). Optimization of parameters in electron probe microanalysis. X-Ray Spectrom 30, 313319.
Carreras, A., Trincavelli, J., Bonetto, R. & Castellano, G. (2005). Determination of L-shell intensity ratios for Yb, Hf and Ta by a parameter refinement method. X-Ray Spectrom 34, 124127.
Castellano, G., Bonetto, R., Trincavelli, J., Vasconcellos, M. & Campos, C. (2002). Optimization of K-shell intensity ratios in electron probe microanalysis. X-Ray Spectrom 31, 184187.
Castellano, G., Osán, J. & Trincavelli, J. (2004). Analytical model for the bremsstrahlung spectrum in the 0.25–20 keV photon energy range. Spectrochimica Acta B 59, 313319.
Chantler, C.T., Olsen, K., Dragoset, R.A., Chang, J., Kishore, A.R., Kotochigova, S.A. & Zucker, D.S. (2005). X-ray form factor, attenuation and scattering tables (version 2.1). Gaithersburg, MD: National Institute of Standards and Technology. Available at: http://physics.nist.gov/ffast (accessed December 17, 2007). [Originally published as Chantler, C.T. (2000). J Phys Chem Ref Data 29(4), 597–1048 and Chantler, C.T. (1995). J Phys Chem Ref Data 24, 71–643.]
Fournier, C., Merlet, C., Dungne, O. & Fialin, M. (1999). Standardless semi-quantitative analysis with WDS-EPMA. J Anal At Spectrom 14, 381386.
Goldstein, J.I., Newbury, D.E., Echlin, P., Joy, D.C., Romig, A.D. Jr., Lyman, C.E., Fiori, C. & Lifshin, E. (1994). Scanning Electron Microscopy and X-Ray Microanalysis, 2nd ed., pp. 456460. New York: Plenum Press.
Merlet, C. & Llovet, X. (2006). Absolute determination of characteristic X-ray yields with a wavelength-dispersive spectrometer. Microchim Acta 155, 199204.
Merlet, C., Llovet, X. & Fernández-Varea, J.M. (2006). Absolute K-shell ionization cross sections and Lα and Lβ1 X-ray production cross sections of Ga and As by 1.5–39-keV electrons. Phys Rev A 73, 062719, 110.
Packwood, R. & Brown, J. (1981). A Gaussian expression to describe φ(ρz) curves for quantitative electron probe microanalysis. X-Ray Spectrom 10, 138146.
Reed, S.J.B. (1993). Electron Probe Microanalysis, 2nd ed., pp. 7175. Cambridge: Cambridge University Press.
Reed, S.J.B. (2002). Optimization of wavelength dispersive X-ray spectrometry analysis conditions. J Res Natl Inst Stand Technol 107, 497502.
Riveros, J.A., Castellano, G. & Trincavelli, J. (1992). Comparison of φ(ρz) curve models in EPMA. Mikrochim Acta (12yes), 99105.
Smith, D.G.W. & Gold, C.M. (1979). EDATA2: A Fortran IV computer program for processing wavelength- and/or energy-dispersive electron microprobe analyses. In Proceedings 14th Annual Conference of the Microbeam Analysis Society, Newbury, D.E. (Ed.), pp. 273278. San Francisco: San Francisco Press.
Smith, D.G.W. & Reed, S.J.B. (1981). The calculation of background in wavelength-dispersive electron microprobe analysis. X-Ray Spectrom 10, 198202.
Statham, P.J. (1979). A ZAF procedure for microprobe analysis based on measurement of peak-to-background ratios. In Proceedings 14th Annual Conference of the Microbeam Analysis Society, Newbury, D.E. (Ed.), pp. 247253. San Francisco: San Francisco Press.
Trincavelli, J., Castellano, G. & Bonetto, R. (2002). L-shell transition rates for Ba, Ta, W, Pt, Pb and Bi using electron microprobe. Spectrochim Acta B 57, 919928.
Visñovezky, C., Limandri, S., Canafoglia, M., Bonetto, R. & Trincavelli, J. (2007). Asymmetry of characteristic X-ray peaks obtained by a Si(Li) detector. Spectrochim Acta B 62, 492498.
Wernisch, J. (1985). Quantitative electron microprobe analysis without standard samples. X-Ray Spectrom 14, 109119.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed