Skip to main content Accessibility help

Exceeding Conventional Resolution Limits in High-Resolution Transmission Electron Microscopy Using Tilted Illumination and Exit-Wave Restoration

  • Sarah J. Haigh (a1), Hidetaka Sawada (a2), Kunio Takayanagi (a3) (a4) and Angus I. Kirkland (a1)


Tilted illumination exit-wave restoration is compared for two aberration-corrected instruments at different accelerating voltages. The experimental progress of this technique is also reviewed and the significance of off-axial aberrations examined. Finally, the importance of higher order aberration compensation combined with careful correction of the lower order aberrations is highlighted.


Corresponding author

Corresponding author. E-mail:


Hide All
Buseck, P., Cowley, J. & Eyring, L. (1989). High Resolution Transmission Electron Microscopy and Related Techniques. Oxford: Oxford University Press.
Coene, W., Janssen, G., Op de Beeck, M. & van Dyck, D. (1992). Phase retrieval through focus variation for ultra-resolution in field-emission transmission electron microscopy. Phys Rev Lett 69, 37433746.
Coene, W.M.J., Thust, A., Op de Beeck, M. & van Dyck, D. (1996). Maximum-likelihood method for focus-variation image reconstruction in high resolution transmission electron microscopy. Ultramicroscopy 64, 109135.
Gontard, L.C., Chang, L.Y., Hetherington, C.J.D., Kirkland, A.I., Ozkaya, D. & Dunin-Borkowski, R.E. (2007). Aberration-corrected imaging of active sites on industrial catalyst nanoparticles. Angew Chem Int Ed 46, 36833685.
Haider, M., Rose, H., Uhlemann, S., Schwan, E., Kabius, B. & Urban, K. (1998a). A spherical-aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy 75, 5360.
Haider, M., Uhlemann, S., Schwan, E., Rose, H., Kabius, B. & Urban, K. (1998b). Electron microscopy image enhanced. Nature 392, 768769.
Haider, M., Uhlemann, S. & Zach, J. (2000). Upper limits for the residual aberrations of a high-resolution aberration-corrected STEM. Ultramicroscopy 81, 163175.
Haigh, S.J., Sawada, H. & Kirkland, A.I. (2009a). Atomic structure imaging beyond conventional resolution limits in the transmission electron microscope. Phys Rev Lett 103(12), 126101–4.
Haigh, S.J., Sawada, H. & Kirkland, A.I. (2009b). Optimal tilt magnitude determination for aberration-corrected super resolution exit wave function reconstruction. Phil Trans R Soc A 367(1903), 37553771.
Hartel, P., Muller, H., Uhlemann, S. & Haider, M. (2007). Experimental set-up of an advanced hexapole Cs-corrector. Microsc Microanal 13(S2), 11481149.
Hetherington, C.J.D., Chang, L.Y., Haigh, S., Nellist, P.D., Gontard, L.C., Dunin-Borkowski, R.E. & Kirkland, A.I. (2008). High-resolution TEM and the application of direct and indirect aberration correction. Microsc Microanal 14, 6067.
Hutchison, J.L., Titchmarsh, J.M., Cockayne, D.J.H., Doole, R.C., Hetherington, C.J.D., Kirkland, A.I. & Sawada, H. (2005). A versatile double aberration-corrected, energy filtered HREM/STEM for materials science. Ultramicroscopy 103, 715.
Kirkland, A., Meyer, R. & Chang, L. (2006). Local measurement and computational refinement of aberrations for HRTEM. Microsc Microanal 12, 461468.
Kirkland, A.I., Saxton, W.O. & Chand, G. (1997). Multiple beam tilt microscopy for super resolved imaging. J Electron Microsc 1, 1122.
Kirkland, A.I., Saxton, W.O., Chau, K.L., Tsuno, K. & Kawasaki, M. (1995). Super-resolution by aperture synthesis: Tilt series reconstruction in CTEM. Ultramicroscopy 57, 355374.
Meyer, R. (2002). Quantitative automated object wave restoration in high resolution electron microscopy. PhD Thesis. Dresden Technical University.
Meyer, R.R. & Kirkland, A.I. (2000). Characterisation of the signal and noise transfer of CCD cameras for electron detection. Microsc Res Techniq 49, 269280.
Meyer, R.R., Kirkland, A.I., Dunin-Borkowski, R.E. & Hutchison, J.L. (2000). Experimental characterisation of CCD cameras for HREM at 300 kV. Ultramicroscopy 85, 913.
Meyer, R., Kirkland, A. & Saxton, W. (2002). A new method for the determination of the wave aberration function for high resolution TEM. 1. Measurement of the symmetric abberations. Ultramicroscopy 92, 89109.
Meyer, R., Kirkland, A. & Saxton, W. (2004). A new method for the determination of the wave aberration function for high resolution TEM. 2. Measurement of the antisymmetric abberations. Ultramicroscopy 99, 115123.
Nellist, P.D., McCallum, B.C. & Rodenburg, J.M. (1995). Resolution beyond the information limit in transmission electron microscopy. Nature 374, 630632.
Op de Beeck, M., van Dyck, D. & Coene, W. (1996). Wave function reconstruction in HRTEM: The parabola method. Ultramicroscopy 64, 167183.
Rodenburg, J.M. & Bates, R.H.T. (1992). The theory of superresolution electron-microscopy via Wigner-distribution deconvolution. Phil Trans R Soc Lond A 339, 521553.
Ryle, M. (1972). The 5-km radio telescope at Cambridge. Nature 239, 435438.
Ryle, M. & Vonberg, D. (1946). Solar radiation on 175Mc/s—Observations from the first multi-element astronomical radio interferometer. Nat Mater 158, 339340.
Sawada, H., Tanishiro, Y., Ohashi, N., Tomita, T., Hosokawa, F., Kaneyama, T., Kondo, Y. & Takayanagi, K. (2009). STEM imaging of 47pm-separated atomic columns by a spherical aberration-corrected electron microscope with a 300-kV cold field emission gun. J Electron Microsc 56, 357361.
Saxton, W.O. (1988). Accurate atom positions from focal and tilted beam series of high resolution electron micrographs. In Image and Signal Processing in Electron Microscopy, Proc 6th Pfefferkorn Conf, Niagara, Hawkes, P.W., Ottensmeyer, F.P., Saxton, W.O. & Rosenfeld, A. (Eds.), pp. 213224. Chicago, IL: Scanning Microscopy International.
Shearman, E.D.R. & Clarke, J. (1968). Aperture synthesis in ionospheric radar. Nature 219, 143144.
Smith, D.J. (1997). The realization of atomic resolution with the electron microscope. Rep Prog Phys 60, 15131580.
Smith, D.J., Saxton, W., O'Keefe, M., Wood, G. & Stobbs, W. (1983). The importance of beam alignment and crystal tilt in high-resolution electron-microscopy. Ultramicroscopy 11, 263281.
Spence, J. (1999). The future of atomic resolution electron microscopy for materials science. Mater Sci Eng 26, 149.
Spence, J. (2002). High Resolution Electron Microscopy, 3rd Ed.Oxford: Oxford University Press.
Thust, A., Coene, W., Op de Beeck, M. & van Dyck, D. (1996a). Focal-series reconstruction in HRTEM: Simulation studies on non-periodic objects. Ultramicroscopy 64, 211230.
Thust, A., Overwijk, M., Coene, W. & Lentzen, M. (1996b). Numerical correction of lens aberrations in phase retrieval HRTEM. Ultramicroscopy 64, 249264.
Tillmann, K., Thust, A. & Urban, K. (2004). Spherical aberration correction in tandem with exit-plane wave function reconstruction: Interlocking tools for the atomic scale imaging of lattice defects in GaAs. Microsc Microanal 10, 185198.
Typke, D. & Dierksen, K. (1995). Determination of image aberrations in high resolution electron microscopy using diffractogram and cross-correlation methods. Optik 99, 155166.
Uhlemann, S. & Haider, M. (1998). Residual wave aberrations in the first spherical aberration corrected transmission electron microscope. Ultramicroscopy 72, 109119.
van Dyck, D., Op de Beeck, M. & Coene, W. (1993). A new approach to object wave-function reconstruction in electron-microscopy. Optik 93, 103107.
van Tendeloo, G. (1998). High resolution electron microscopy in materials research. J Mater Chem 8, 797808.
Zandbergen, H.W. & van Dyck, D. (2000). Exit wave reconstructions using through focus series of HREM images. Microsc Res Tech 49, 301323.


Exceeding Conventional Resolution Limits in High-Resolution Transmission Electron Microscopy Using Tilted Illumination and Exit-Wave Restoration

  • Sarah J. Haigh (a1), Hidetaka Sawada (a2), Kunio Takayanagi (a3) (a4) and Angus I. Kirkland (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed