Skip to main content Accessibility help

Estimation of the Reconstruction Parameters for Atom Probe Tomography

  • Baptiste Gault (a1), Frederic de Geuser (a2), Leigh T. Stephenson (a1), Michael P. Moody (a1), Barrington C. Muddle (a2) and Simon P. Ringer (a1)...


The application of wide field-of-view detection systems to atom probe experiments emphasizes the importance of careful parameter selection in the tomographic reconstruction of the analyzed volume, as the sensitivity to errors rises steeply with increases in analysis dimensions. In this article, a self-consistent method is presented for the systematic determination of the main reconstruction parameters. In the proposed approach, the compression factor and the field factor are determined using geometrical projections from the desorption images. A three-dimensional Fourier transform is then applied to a series of reconstructions, and after comparing to the known material crystallography, the efficiency of the detector is estimated. The final results demonstrate a significant improvement in the accuracy of the reconstructed volumes.


Corresponding author

Corresponding author. E-mail:


Hide All
Bas, P., Bostel, A., Deconihout, B. & Blavette, D. (1995). A general protocol for the reconstruction of 3D atom probe data. Appl Surf Sci 87/88, 298304.
Blavette, D., Bostel, A., Sarrau, J.M., Deconihout, B. & Menand, A. (1993a). An atom probe for three-dimensional tomography. Nature 363, 432435.
Blavette, D., Cadel, E., Fraczkiewicz, A. & Menand, A. (1999). Three-dimensional atomic-scale imaging of impurity segregation to line defects. Science 286, 23172319.
Blavette, D., Deconihout, B., Bostel, A., Sarrau, J.M., Bouet, M. & Menand, A. (1993b). The tomographic atom probe: A quantitative three-dimensional nanoanalytical instrument on an atomic scale. Rev Sci Instrum 64, 29112919.
Brandon, D.G. (1964). The accurate determination of crystal orientation from field ion micrographs. J Sci Instrum 41, 373375.
Brandon, D.G. (1968). Field evaporation and gas impact, field etching and field deformation. In Field Ion Microscopy, Hren, J.J. & Ranganathan, S. (Eds.), pp. 2852. New York: Plenum.
Camus, P.P., Larson, D.J. & Kelly, T.F. (1995). A method for reconstructing and locating atoms on the crystal lattice in three dimensional atom probe data. Appl Surf Sci 87/88, 305310.
Cerezo, A., Godfrey, T.J. & Smith, G.D.W. (1988). Application of a position-sensitive detector to atom probe microanalysis. Rev Sci Instrum 59, 862866.
Cerezo, A., Warren, P.J. & Smith, G.D.W. (1999). Some aspects of image projection in the field-ion microscope. Ultramicroscopy 79, 251257.
de Geuser, F., Lefebvre, W. & Blavette, D. (2006). 3D atom probe study of solute atoms clustering during natural ageing and pre-ageing of an Al-Mg-Si alloy. Phil Mag Lett 86, 227234.
Dreschler, M. & Wolf, D. (1958). Zur Analyse von Feldionenmikroscop-Aufnahmen mit atomarer Auflösung. Proc 4th Int Conf Electron Microscopy, pp. 835848. Berlin: Springer.
Edwards, G.A., Stiller, K., Dunlop, G.L. & Couper, M.J. (1998). The precipitation sequence in Al-Mg-Si alloys. Acata Mat 46, 38933904.
Gault, B., Vurpillot, F., Vella, A., Gilbert, M., Menand, A., Blavette, D. & Deconihout, B. (2006). Design of a femtosecond laser assisted tomographic atom probe. Rev Sci Instrum 77, 043705.
Geiser, B.P., Kelly, T.F., Larson, D.J., Schneir, J. & Roberts, J.P. (2007). Spatial distribution maps for atom probe tomography. Micros Microanal 13, 437447.
Gomer, R. (1961). Field Emission and Field Ionization. London: Oxford University Press.
Gorman, B. (2007). Atom probe reconstruction refinements by pre- and post-analysis TEM structure quantification. Microsc Microanal 13, 16161617.
Hono, K., Hiraga, K., Wang, Q., Inoue, A. & Sakurai, T. (1992). The microstructure evolution of a Fe73.5Si13.5B9Nb3Cu1 nanocrystalline soft magnetic material. Acta Met Mat 40, 21372147.
Hyde, J.M., Cerezo, A., Setna, R.P., Warren, P.J. & Smith, G.D.W. (1994). Lateral and depth scale calibration of the position sensitive atom probe. Appl Surf Sci 76/77, 382391.
Kellogg, G.L. & Tsong, T.T. (1980). Pulsed-laser atom-probe field-ion microscopy. J Appl Phys 51, 11841193.
Kelly, T.F., Camus, P.P., Larson, D.J., Holzman, L.M. & Bajikar, S.S. (1996). On the many advantages of local electrode atom probes. Ultramicroscopy 62, 2942.
Kelly, T.F., Gribb, T.T., Olson, J.D., Martens, R.L., Shepard, J.D., Wiener, S.A., Kunicki, T.C., Ulfig, R.M., Lenz, D.R., Strennen, E.M., Oltman, E., Bunton, J.H. & Strait, D.R. (2004). First data from a commercial local electrode atom probe (LEAP). Microsc Microanal 10, 373383.
Kelly, T.F., Larson, D.J., Thompson, K., Alvis, R.L., Bunton, J.H., Olson, J.D. & Gorman, B.P. (2007). Atom probe tomography of electronic materials. Annu Rev Mater Res 37, 681727.
Kelly, T.F. & Miller, M.K. (2007). Invited review article: Atom probe tomography. Rev Sci Instrum 78, 031101.
Miller, M.K., Cerezo, A., Hetherington, M.G. & Smith, G.D.W. (Eds.) (1996). Atom Probe Field Ion Microscopy. Oxford: Oxford University Press.
Moody, M.P., Stephenson, L.T., Liddicoat, P.V. & Ringer, S.P. (2007). Contingency table techniques for three dimensional atom probe tomography. Microsc Res Tech 70, 258268.
Müller, E.W. (1965). Field ion microscopy. Science 149, 591601.
Müller, E.W. & Bahadur, K. (1956). Field ionization of gases at a metal surface and the resolution of the FIM. Phys Rev 102, 624631.
Müller, E.W., Panitz, J.A. & McClean, S.B. (1968). The atom probe field ion microscope. Rev Sci Instrum 39, 8386.
Newman, R.W., Sanwald, R.C. & Hren, J.J. (1967). A method for indexing field ion micrographs. J Sci Instrum 44, 828830.
Panitz, J.A. (1973). The 10 cm atom probe. Rev Sci Instrum 44, 10341038.
Panitz, J.A. (1974). The crystallographic distribution of field-desorbed species. J Vac Sci Tech 11, 207210.
Panitz, J.A. (1978). Imaging atom-probe mass spectroscopy. Prog Surf Sci 8, 219262.
Sakurai, T. & Müller, E.W. (1973). Field calibration using the energy distribution of field ionization. Phys Rev Lett 30, 532535.
Sakurai, T. & Müller, E.W. (1977). Field calibration using the energy distribution of a free-space field ionization. J Appl Phys 48, 26182625.
Seidman, D.N. (2007). Three-dimensional atom-probe tomography: Advances and applications. Annu Rev Mater Res 37, 127158.
Suchorski, Y., Schmidt, W.A., Ernst, N. & Block, J.H. (1995). Electrostatic fields above individual atoms. Prog Surf Sci 48, 121134.
Thompson, K., Flaitz, P.L., Ronsheim, P., Larson, D.J. & Kelly, T.F. (2007). Imaging of arsenic Cottrell atmospheres around silicon defects by three-dimensional atom probe tomography. Science 317, 13701374.
Timokhina, I.B., Hodgson, P.D., Ringer, S.P., Zheng, R.K. & Pereloma, E.V. (2007). Precipitate characterisation of an advanced high-strength low-alloy (HSLA) steel using atom probe tomography. Scripta Mat 56, 601604.
Tsong, T.T. (1971). Measurement of the polarizabilities and field evaporation of individual tungsten atoms. J Chem Phys 54, 42054216.
Tsong, T.T. (1978). Field ion image formation. Surf Sci 70, 211233.
Tsong, T.T. (1990). Atom-Probe Field Ion Microscopy. Cambridge, UK: Cambridge University Press.
Tsong, T.T., McLane, S.B. & Kinkus, T.J. (1982). Pulsed-laser time-of-flight atom-probe field ion microscope. Rev Sci Instrum 53, 14421448.
Vurpillot, F., Bostel, A. & Blavette, D. (1999). The shape of field emitters and the ion trajectories in three-dimensional atom probes. J Microsc 196, 332336.
Vurpillot, F., Da Costa, G., Menand, A. & Blavette, D. (2001). Structural analyses in three dimensional atom probe: A Fourier transform approach. J Microsc 203, 295302.
Waugh, A.R., Boyes, E.D. & Southon, M.J. (1976). Investigations of field evaporation with a field-desorption microscope. Surf Sci 61, 109142.
Waugh, A.R. & Southon, M.J. (1977). Surface studies with an imaging atom-probe. Surf Sci 68, 7985.
Wilkes, T.J., Smith, G.D.W. & Smith, D.A. (1974). On the quantitative analysis of field-ion micrographs. Metallography 7, 403430.


Related content

Powered by UNSILO

Estimation of the Reconstruction Parameters for Atom Probe Tomography

  • Baptiste Gault (a1), Frederic de Geuser (a2), Leigh T. Stephenson (a1), Michael P. Moody (a1), Barrington C. Muddle (a2) and Simon P. Ringer (a1)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.