Skip to main content Accessibility help

Environmental Scanning Electron Microscopy Technique to Identify Asbestos Phases Inside Ferruginous Bodies

  • Alessandro Croce (a1), Maya Musa (a1), Mario Allegrina (a1), Paolo Trivero (a1) and Caterina Rinaudo (a1)...


Ferruginous bodies observed in lungs of patients affected by mesothelioma, asbestosis, and pulmonary carcinoma are important to relate the illness to exposure, environmental or occupational, to asbestos. Identification of the inorganic phase constituting the core of the ferruginous bodies, formed around asbestos but also around phases different from asbestos, is essential for legal purposes. Environmental scanning electron microscopy/energy dispersive spectroscopy was used to identify the fibrous mineral phase in the core of ferruginous bodies observed directly in thin sections of tissue, without digestion of the biological matrix. Spectra were taken with sequential analyses along a line crossing the core of the ferruginous bodies. By comparing the spectra taken near to and far from the core, the chemical elements that make up the core could be identified.


Corresponding author

* Corresponding author. E-mail:


Hide All
Arul, K.J. & Holt, P.F. (1980). Clearance of asbestos bodies from the lung: A personal view. Br J Ind Med 37, 273277.
Belluso, E., Bellis, D., Fornero, E., Capella, S., Ferraris, G. & Coverlizza, S. (2006). Assessment of inorganic fibre burden in biological samples by SEM-EDS. Microchim Acta 155, 95100.
Bernstein, D., Castranova, V., Donaldson, K., Fubini, B., Hadley, J., Hesterberg, T., Kane, A., Lai, D., McConnell, E.E., Muhle, H., Oberdorster, G., Olin, S. & Warheit, D.B. (2005). Testing of fibrous particles: Short-term assays and strategies. Report of an ILSI risk science institute working group. Inhal Toxicol 17, 497537.
Chasteen, N.D. & Harrison, P.M. (1999). Mineralization in ferritin: An efficient means of iron storage. J Struct Biol 126, 182194.
Churg, A.M. & Warnoc, M.L. (1981). Asbestos and other ferruginous bodies: Their formation and clinical significance. Am J Pathol 102(3), 447456.
De Vuyst, P., Karjalainen, A., Dumortier, P., Pairon, J.C., Monsò, E., Brochard, P., Teschler, H., Tossavainen, A. & Gibbs, A. (1998). Guidelines for mineral fibre analyses in biological samples: Report of the ERS working group. Eur Respir J 11, 14161426.
Dodson, R.F. & Levin, J.L. (2001). An unusual case of mixed-dust exposure involving a “noncommercial” asbestos. Environ Health Persp 109, 199203.
Dodson, R.F., O'Sullivan, M., Corn, C.J., Garcia, J.G.N., Stocks, J.M. & Griffith, D.E. (1993). Analysis of ferruginous bodies in bronchoalveolar lavage from foundry workers. Br J Ind Med 50, 10321038.
Dumortier, P., Broucke, I. & De Vuyst, P. (2001). Pseudoasbestos bodies and fibers in bronchoalveolar lavage of refractory ceramic fiber users. Am J Resp Crit Care 164, 499503.
Ghio, A.J., Churg, A. & Roggli, V.L. (2004). Ferruginous bodies: Implications in the mechanism of fiber and particle toxicity. Toxicol Pathol 32, 643649.
Giacobbe, C., Gualtieri, A.F., Quartieri, S., Rinaudo, C., Allegrina, M. & Andreozzi, G. (2010). Spectroscopic study of the product of thermal transformation of chrysotile-asbestos containing materials (ACM). Eur J Mineral 22, 535546.
Gross, P., Cralley, L.J. & DeTreville, R.T.P. (1967). “Asbestos” bodies: Their nonspecificity. Am Ind Hyg Assoc J 28, 541542.
Guidotti, T.L. (2001). The debate on banning asbestos. Can Med Assoc J 165, 11891190.
Guthrie, G.D. (1992). Biological effects of inhaled minerals. Am Mineral 77, 225243.
Guthrie, G.D. & Mossman, B.T. (Eds.) (1993). Health Effects of Mineral Dusts, Reviews in Mineralogy, Vol. 28, Ribbe, P.H. (Series Ed.). Washington, DC: Mineralogical Society of America.
Kane, A.B. & Kumar, V. (1999). Environmental and nutritional pathology. In Robbins Pathologic Basis of Disease, 6th ed., Cotran, R.S., Kumar, V. & Collins, T. (Eds.), pp. 403458. Philadelphia, PA: Saunders W.B. Company.
Koerten, H.K., Hazekamp, J., Kroon, M. & Daems, W.T. (1990). Asbestos body formation and iron accumulation in mouse peritoneal granulomas after the introduction of crocidolite asbestos fibers. Am J Pathol 136(1), 141157.
Langer, A.M., Rubin, I.B. & Selikoff, I.J. (1972). Chemical characterization of asbestos body cores by electron microprobe analysis. J Histochem Cytochem 20(9), 723734.
Lund, L.G., Williams, M.G., Dodson, R.F. & Aust, A.E. (1994). Iron associated with asbestos bodies is responsible for the formation of single strand breaks in ϕ X174 RFI DNA. Occup Environ Med 51, 200204.
Marchand, J.L., Luce, D., Leclerc, A., Goldberg, P., Orlowski, E., Bugle, I. & Brugère, J. (2000). Laryngeal and hypopharyngeal cancer and occupational exposure to asbestos and man-made vitreous fibers: Results of a case-control study. Am J Ind Med 37, 581589.
Meredith, S.K., Taylor, V.M. & McDonald, J.C. (1991). Occupational respiratory disease in the United Kingdom 1989: A report of the British Thoracic Society and the Society of Occupational Medicine by the SWORD project group. Br J Ind Med 48, 292298.
Musa, M., Croce, A., Allegrina, M., Rinaudo, C., Belluso, E., Bellis, D., Toffalorio, F. & Veronesi, G. (2012). The use of Raman spectroscopy to identify inorganic phases in iatrogenic pathological lesions of patients with malignant pleural mesothelioma. Vib Spectrosc 61, 6671.
Rinaudo, C., Allegrina, M., Fornero, E., Musa, M., Croce, A. & Bellis, D. (2010a). Micro-Raman spectroscopy and VP-SEM/EDS applied to the identification of mineral particles and fibres in histological sections. J Raman Spectrosc 41, 2732.
Rinaudo, C., Belluso, E. & Gastaldi, D. (2004). Assessment of the use of Raman spectroscopy for the determination of amphibole asbestos. Mineral Mag 68(3), 455465.
Rinaudo, C., Cairo, S., Gastaldi, D., Gianfagna, A., Mazziotti-Tagliani, S., Tosi, G. & Conti, C. (2006). Characterization of fluoro-edenite by μ-Raman and μ-FTIR spectroscopy. Mineral Mag 70, 291298.
Rinaudo, C., Croce, A., Musa, M., Fornero, E., Allegrina, M., Trivero, P., Bellis, D., Sferch, D., Toffalorio, F., Veronesi, G. & Pelosi, G. (2010b). Study of inorganic particles, fibres and asbestos bodies by VP-SEM/EDS and micro-Raman spectroscopy in thin sections of lung and pleural plaque. Appl Spectrosc 64, 571577.
Rinaudo, C., Gastaldi, D., Belluso, E. & Capella, S. (2005). Application of Raman spectroscopy on asbestos fibre identification. Neues Jb Miner Abh 182(1), 3136.
Roggli, V.L. (1992). Asbestos bodies and non-asbestos ferruginous bodies. In Pathology of Asbestos-Associated Diseases, 2nd ed., Roggli, V.L., Victor, L., Oury, T.D. & Sporn, T.A. (Eds.), pp. 3470. New York: Lippincott Williams & Wilkens.
Roggli, V.L. (2006). The role of analytical SEM in the determination of causation in malignant mesothelioma. Ultrastruct Pathol 30, 3135.
Tannapfel, A. (2011). Malignant Mesothelioma. Bochum, Germany: Springer Verlag.
Virta, R.L. (1985). The phase relationship of talc and amphiboles in a fibrous talc sample. US Bur Mines Rep Invest 8923, 111.


Environmental Scanning Electron Microscopy Technique to Identify Asbestos Phases Inside Ferruginous Bodies

  • Alessandro Croce (a1), Maya Musa (a1), Mario Allegrina (a1), Paolo Trivero (a1) and Caterina Rinaudo (a1)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed