Skip to main content Accessibility help
×
Home

Enhanced Quantification for 3D Energy Dispersive Spectrometry: Going Beyond the Limitation of Large Volume of X-Ray Emission

  • Pierre Burdet (a1), Cécile Hébert (a2) and Marco Cantoni (a2)

Abstract

This paper presents a method developed to quantify three-dimensional energy dispersive spectrometry (3D EDS) data with voxel size smaller than the volume from which X-rays are emitted. The influence of the neighboring voxels is corrected by applying recursively a complex quantification, improving thereby the accuracy of the quantification of critically small features. The enhanced quantification method is applied to simulated and measured data. A systematic improvement is obtained compared with classical quantification, proving the concept and the prospect of this method.

Copyright

Corresponding author

*Corresponding author. pb565@cam.ac.uk

References

Hide All
Anderson, C.A. & Hasler, M. (1966). X-ray range. In Proccedings of the 4th International Conference on X-ray otpics and Microanalysis, Castaing R., Deschamps P. & Philibert J. (Eds.), pp. 310. Paris: Wiley.
Bastin, G.F., Dijkstra, J.M., Heijligers, H.J.M. & Klepper, D. (1993). In depth profiling with the electron probe microanalyzer. Microbeam Anal 2, 2943.
Bastin, G. & Heijligers, H. (2000 a). A systematic database of thin-film measurements by EPMA: part I—aluminum films. X Ray Spectrom 29, 212238.
Bastin, G. & Heijligers, H. (2000 b). A systematic database of thin-film measurements by EPMA: part II—palladium films. X Ray Spectrom 29, 373397.
Bright, D. & Newbury, D. (1991). Concentration histogram imaging: A scatter diagram technique for viewing two or three related images. Anal Chem 63, 243A250A.
Burdet, P. (2012). Three dimensional microanalysis by energy dispersive spectrometry: Improved data processing. Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne, Lausanne.
Burdet, P., Vannod, J., Hessler-Wyser, A., Rappaz, M. & Cantoni, M. (2013). 3D chemical anaylsis of laser welded NiTi: Stainless steel wire using a dualbeam FIB. Acta Mater 61(8), 30903098.
Cacciamani, G., De Keyzer, J., Ferro, R., Klotz, U., Lacaze, J. & Wollants, P. (2006). Critical evaluation of the Fe-Ni, Fe-Ti and Fe-Ni-Ti alloy systems. Intermetallics 14, 13121325.
Cantoni, M., Genoud, C., Hébert, C. & Knott, G. (2010). Large volume, isotropic, 3D imaging of cell structure on the nanometer scale. Microsc Anal 24, 1316.
Friedli, J. (2011). Interfacial energy anisotropy and growth morphologies in aluminium-zinc Alloys. Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne, Lausanne.
Friel, J. & Lyman, C. (2006). Tutorial review: X-ray mapping in electron-beam instruments. Microsc Microanal 12, 225.
Gauvin, R., Hovington, P. & Drouin, D. (1995). Quantification of spherical inclusions in the scanning electron microscope using Monte Carlo simulations. Scanning 17, 202219.
Goldstein, J., Newbury, D.E., Echlin, P., Joy, D.C., Lyman, C.E., Lifshin, E. & Sawyer, L. (2003). Scanning Electron Microscopy and X-Ray Microanalysis. New York: Plenum Publishers.
Lucas, G., Burdet, P., Cantoni, M. & Hébert, C. (2013). Multivariate statistical analysis as a tool for the segmentation of 3D hyperspectral data. Micron 52, 4956.
Massalski, T.B. (Ed.) (1986). Chapter Al-Zn. In Binary alloy Phase Diagrams: Volume 1 (Ac-Au to Fe-Rh), pp. 184188. Ohio: American Society for Metals.
Merlet, C. (1995). A new quantitative procedure for stratified samples in EPMA. Proceedings of the 29th Annual Conference of the Microbeam Analysis Society, Etz E.S. (Ed.), pp. 203204. New York: VHC.
Pouchou, J. & Pichoir, F. (1984). New model for quantitative x-ray microanalysis. part II: Application to in-depth analysis of heterogeneous samples. Rech Aerospatiale 5, 4765.
Pouchou, J.L. & Pichoir, F. (1991). Quantitative analysis of homogeneous or stratified microvolumes applying the model PAP. In Electron Probe Quantitation, Heinrich K.F.J. & Newbury D.E. (Ed.), pp. 3175. New York: Plenum Press.
Pouchou, J.L. & Pichoir, F. (1993). Electron probe X-ray microanalysis applied to thin surface films and stratified specimens. Scanning Microsc Suppl 7, 167189.
Pouchou, J.-L. (2002). X-ray microanalysis of thin surface films and coatings. Mikrochim Acta 138, 133152.
Ritchie, N.W. (2009). Spectrum simulation in DTSA-II. Microsc Microanal 15, 454468.
Schaffer, M. & Wagner, J. (2008). Block lift-out sample preparation for 3D experiments in a dual beam focused ion beam microscope. Microchimica Acta 161, 421425.
Schaffer, M., Wagner, J., Schaffer, B., Schmied, M. & Mulders, H. (2007). Automated three-dimensional x-ray analysis using a dual-beam FIB. Ultramicroscopy 107, 587597.
Small, J.A., Heinrich, K.F.J., Fiori, C.E., Myklebust, R.L., Newbury, D.E. & Dillmore, M.F. (1978). The production and characterization of glass fibers and spheres for microanalysis. Scanning Electron Microsc I, 445454.
Statham, P.J. & Pawley, J.B. (1978). New method for particle X-ray Micro-analysis based on peak to background measurements. Scanning Electron Microsc I, 469478.
Statham, P.J. (2010). Feasibility of x-ray analysis of multi-layer thin films at a single beam voltage. IOP Conf Ser: Mater Sci Eng 7, 012027.
Thèvenaz, P., Ruttimann, U. & Unser, M. (1998). A pyramid approach to subpixel registration based on intensity. IEEE T Image Process 7, 2741.
Vannod, J. (2011). Laser welding of nickel-titanium and stainless steel wires: Processing, metallurgy and properties. Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne, Lausanne.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed