Skip to main content Accessibility help
×
Home

Electron Microscopy Imaging of Zinc Soaps Nucleation in Oil Paint

  • Joen Hermans (a1), Gillian Osmond (a2), Annelies van Loon (a1), Piet Iedema (a1), Robyn Chapman (a3), John Drennan (a3), Kevin Jack (a3), Ronald Rasch (a3), Garry Morgan (a4), Zhi Zhang (a3), Michael Monteiro (a5) and Katrien Keune (a6)...

Abstract

Using the recently developed techniques of electron tomography, we have explored the first stages of disfiguring formation of zinc soaps in modern oil paintings. The formation of complexes of zinc ions with fatty acids in paint layers is a major threat to the stability and appearance of many late 19th and early 20th century oil paintings. Moreover, the occurrence of zinc soaps in oil paintings leading to defects is disturbingly common, but the chemical reactions and migration mechanisms leading to large zinc soap aggregates or zones remain poorly understood. State-of-the-art scanning (SEM) and transmission (TEM) electron microscopy techniques, primarily developed for biological specimens, have enabled us to visualize the earliest stages of crystalline zinc soap growth in a reconstructed zinc white (ZnO) oil paint sample. In situ sectioning techniques and sequential imaging within the SEM allowed three-dimensional tomographic reconstruction of sample morphology. Improvements in the detection and discrimination of backscattered electrons enabled us to identify local precipitation processes with small atomic number contrast. The SEM images were correlated to low-dose and high-sensitivity TEM images, with high-resolution tomography providing unprecedented insight into the structure of nucleating zinc soaps at the molecular level. The correlative approach applied here to study phase separation, and crystallization processes specific to a problem in art conservation creates possibilities for visualization of phase formation in a wide range of soft materials.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Electron Microscopy Imaging of Zinc Soaps Nucleation in Oil Paint
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Electron Microscopy Imaging of Zinc Soaps Nucleation in Oil Paint
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Electron Microscopy Imaging of Zinc Soaps Nucleation in Oil Paint
      Available formats
      ×

Copyright

Corresponding author

* Author for correspondence: John Drennan, E-mail: j.drennan@uq.edu.au

Footnotes

Hide All

Cite this article: Hermans J, Osmond G, van Loon A, Iedema P, Chapman R, Drennan J, Jack K, Rasch R, Morgan G, Zhang Z Monteiro M, Keune K (2018) Electron Microscopy Imaging of Zinc Soaps Nucleation in Oil Paint. Microsc Microanal 24(3): 318–322. doi: 10.1017/S1431927618000387

Footnotes

References

Hide All
Centeno, SA and Mahon, D (2009) The chemistry of aging in oil paintings: Metal soaps and visual changes. MMAB 67(1), 1219.
Chen-Wiegart, YK, Catalano, J, Williams, GJ, Murphy, A, Yao, Y, Zumbulyadis, N, Centeno, SA, Dybowski, C and Thieme, J (2017) Elemental and molecular segregation in oil paintings due to lead soap degradation. Sci Rep 7(1), 11656.
Harley, RD (1970) Artists’ Pigments c.1600-1835. London: Butterworth and IIC.
Helwig, K, Poulin, J, Corbeil, M-C, Moffat, E and Duguay, D (2014) Conservation issues in several 20th –century Canadian oil paintings: the role of zinc carboxylate reaction products. In: Issues in Contemporary Oil Paint, van den Berg KJ, Burnstock A, Keijzer M, Krueger J, Learner T, de Tagle A and Heydenreich G (Eds.), pp. 167184. Cham, Switzerland: Springer International Publishing.
Hermans, JJ, Keune, K, Van Loon, A, Corkery, RW and Iedema, PD (2014) The molecular structure of three types of long chain zinc(II) alkanoates for the study of oil paint degradation. Polyhedron 81, 335340.
Hermans, JJ, Keune, K, Van Loon, A, Corkery, RW and Iedema, PD (2016 a) Ionomer-like structure in mature oil paint binding media. RSC Adv 6, 9336393369.
Hermans, JJ, Keune, K, Van Loon, A and Iedema, PD (2016 b) The crystallisation of metal soaps and fatty acids in oil paint model systems. Phys Chem Chem Phys 18, 10896.
Hermans, JJ, Keune, K, Van Loon, A and Iedema, PD (2015) An infrared spectroscopic study of the nature of zinc carboxylates in oil paintings. J Anal At Spectrom 30, 16001608.
Higgett, C, Spring, M and Saunders, D (2003) Pigment –medium interactions in oil-paint films containing red lead or lead – tin yellow. Natl Gallery Tech Bull 24, 7595.
Kaszowska, Z, Malek, K, Panczyk, M and Mikolajska, A (2013) A joint application of ATR-FTIR and SEM imaging with High spatial resolution: Identification and distribution of painting materials and their degradation products in paint cross sections. Vib Spectrosc 65(2013), 111.
Keune, K and Boeve-Jones, G (2014) Its surreal: zinc-oxide degradation and misperceptions in Salvador Dali’s Couple with clouds in their heads, 1936 . In: Issues in Contemporary Oil Paints, van den Berg KJ, Burnstock A, Keijzer M, Krueger J, Learner T, de Tagle A and Heydenreich G (Eds.), pp. 283294. Cham, Switzerland: Springer International Publishing.
Keune, K and Boon, JJ (2007) Analytical imaging studies of cross-sections of paintings affected by lead soap aggregate formation. Studies in Conservation 56(3), 161.
Kuhn, H (1986) Zinc white. In: Artists’ Pigments, vol 1. Feller RL (Ed.), pp. 169186. Cambridge: Cambridge University Press.
Lacouture, F, Peultier, J, Francois, M and Steinmetz, J (2000) Anhydrous polymeric zinc(II) octanate. Acta Cryst C 56(5), 556557.
MacDonald, MG, Palmer, MR, Suchomel, MR Berrie, BH (2016) Reaction of Pb(II) and Zn(II) with ethyl linoleate to form structured hybrid inorganic–organic complexes: a model for degradation in historic paint films. ACS Omega 1(3), 344350.
Noble, P, Boon, JJ and Wadum, J (2002) Dissolution aggregation and protrusion: lead soap formation in 17th century grounds and paint layers. Art Matters 1, 4661.
Osmond, G, Ives, S, Dredge, P, Drennan, J and Puskar, L (2013) From Porcelain to Pimples a Study of Synchrotron-sourced Infrared Spectroscopy for Understanding the Localised Aggregation of Zinc Soaps in a Painting by Sir Fredrick Leighton. Poster presented at the 7th International Workshop on Infrared Microscopy and Spectroscopy with Accelerator Based Sources, Lorne, 10–14 November 2013.
Osmond, G, Keune, K and Boon, JJ (2005) A study of zinc soap aggregates in late nineteenth century paintings by R. G. Rivers at the Queensland Art Gallery. AICCM Bull 29, 3746.
Osmond, G (2012) Zinc white: a review of zinc oxide pigment properties and implications for stability in oil-based paintings. AICCM Bull 33, 2029.
Plater, M, De Silva, B, Gelbrich, T, Hursthouse, MB, Higget, CL and Saunders, DR (2003) The characterisation of lead fatty acid soaps in “protrusions” in aged traditional oil paint. Polyhedron 22(24), 31713179.
Shimadzu, Y and Van Den Berg, KJ (2006) On metal soap related colour and transparency changes in a 19th century painting by Millais. In: Reporting Highlights of the de Mayerne Programme. Netherlands Organisation for Scientific Research, The Hague, Boon JJ and Ferreira ESB (Eds.), pp. 4352. Amsterdam: University of Amsterdam.
Townsend, J, Jones, R and Stoner, K (2007) Lead soap aggregates in sixteenth and seventeenth century British Paintings. in: AIC Paintings Speciality Group Post Prints, Providence, Rhode Island, 16-19 June 2006, Mar Parkin H (Ed.), pp. 2432. New York: AIC.
Van der Weerd, J, Gelddof, M, Vander Loff, LS, Heeren, R and Boon, JJ (2003) Zinc soap aggregate formation in Falling Leaves (Les Alyscamps) by Vincent van Gogh. Zeetschrift fur Knusttechnologie und Konservierung 17(2), 407416.

Keywords

Type Description Title
VIDEO
Supplementary materials

Hermans et al. supplementary material
Hermans et al. supplementary material 1

 Video (134.1 MB)
134.1 MB
VIDEO
Supplementary materials

Hermans et al. supplementary material
Hermans et al. supplementary material 2

 Video (41.3 MB)
41.3 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed