## References

Ahmed, J., Wilkinson, A. & Roberts, S. (1997). Characterizing dislocation structures in bulk fatigued copper single crystals using electron channelling contrast imaging (ECCI). Philos Mag Lett
76, 237–245.

Callahan, P. & De Graef, M. (2013). Dynamical EBSD patterns Part I: Pattern simulations. Microsc Microanal
19, 1255–1265.

Chen, Y., Park, S.U., Wei, D., Newstadt, G., Jackson, M., Simmons, J., De Graef, M. & Hero, A. (2015). A dictionary approach to EBSD indexing. Microsc Microanal
21, 739–752.

Coates, D. (1967). Kikuchi-like reflection patterns obtained with scanning electron microscope. Philos Mag
16, 1179–1185.

Crimp, M., Simkin, B. & Ng, B.C. (2001). Demonstration of the g·b×u=0 edge dislocation invisibility criterion for electron channelling contrast imaging. Philos Mag Lett
81, 833–837.

Czernuszka, J., Long, N., Boyes, E. & Hirsch, P. (1990). Imaging of dislocations using backscattered electrons in a scanning electron microscope. Philos Mag Lett
62, 227–232.

De Graef, M. (2003). Introduction to Conventional Transmission Electron Microscopy. Cambridge, UK: Cambridge University Press.

Deitz, J., Carnevale, S., De Graef, M., McComb, D. & Grassman, T. (2016). Characterization of encapsulated quantum dots via electron channeling contrast imaging. Appl Phys Lett
109, 062101.

Dudarev, S., Rez, P. & Whelan, M. (1995). Theory of electron backscattering from crystals. Phys Rev B
51, 3397–3405.

Górski, K., Hivon, E., Banday, A., Wandelt, B., Hansen, F., Reinecke, M. & Bartelmann, M. (2005). HEALPix: A framework for high-resolution discretization and fast analysis of data distributed on the sphere. Astrophys J
622, 759–771.

Goshtasby, A. (2012). Image Registration, Advances in Computer Vision and Pattern Recognition. London: Springer Verlag.

Gutierrez-Urrutia, I., Zaefferer, S. & Raabe, D. (2013). Coupling of electron channeling with EBSD: Toward the quantitative characterization of deformation structures in the SEM. J Mater
65, 1229–1236.

Hawkes, P.W. & Kasper, E. (1989
*a*). *Principles of Electron Optics: Basic Geometrical Optics*, vol. 2, New York: Academic Press.

Hawkes, P.W. & Kasper, E. (1989
*b*). *Principles of Electron Optics: Wave Optics*, vol. 3, New York: Academic Press.

Joy, D. & Booker, G. (1971). Simultaneous display of micrograph and selected-area channelling pattern using the scanning electron microscope. J Phys E Sci Instrum
4, 837–842.

Joy, D., Newbury, D. & Davidson, D. (1982). Electron channeling patterns in the scanning electron microscope. J Appl Phys
53, 81--122.

Mansour, H., Crimp, M., Gey, N. & Maloufi, N. (2015). Accurate electron channeling contrast analysis of a low angle sub-grain boundary. Scr Mater
109, 76–79.

Marthinsen, K. & Høier, R. (1986). Many-beam effects and phase information in electron channeling patterns. Acta Cryst A
42, 484–492.

Nelder, J. & Mead, R. (1965). A simplex method for function minimization. Comput J
7, 308–313.

Picard, Y., Liu, M., Lammatao, J., Kamaladasa, R. & De Graef, M. (2014). Theory of dynamical electron channeling contrast images of near-surface crystal defects. Ultramicroscopy
146, 71–78.

Picard, Y. & Twigg, M. (2008). Diffraction contrast and Bragg reflection determination in forescattered electron channeling contrast images of threading screw dislocations in 4h-SiC. J Appl Phys
104, 124906.

Pizer, S., Amburn, E., Austin, J., Cromartie, R., Geselowitz, A., Greer, T., Romney, B., Zimmerman, J. & Zuiderveld, K. (1987). Adaptive histogram equalization and its variation. Comput Vision, Graph Image Process
39, 355–368.

Powell, M. (2009). The BOBYQA algorithm for bound constrained optimization without derivatives, Technical Report. Department of Applied Mathematics and Theoretical Physics, Cambridge University.

Rios, L. & Sahinidis, N. (2013). Derivative-free optimization: A review of algorithms and comparison of software implementations. J Global Optim
56, 1247–1293.

Roşca, D. (2010). New uniform grids on the sphere. Astron Astrophys
520, A63.

Roşca, D. & Plonka, G. (2011). New uniform grids on the sphere. J Comput Appl Math
236, A63.

Roşca, D., Morawiec, A. & De Graef, M. (2014). A new method of constructing a grid in the space of 3D rotations and its applications to texture analysis. Model Simul Mater Sci Eng
22, 075013.

Rossouw, C., Miller, P., Josefsson, T. & Allen, L. (1994). Zone axis backscattered electron contrast for fast electrons. Philos Mag A
70, 985–998.

Schmidt, N. & Olesen, N. (1989). Computer aided determination of crystal lattice orientation from electron channeling patterns in the SEM. Can Mineral
27, 15–22.

Singh, S. & De Graef, M. (2016). Orientation sampling for dictionary-based diffraction pattern indexing methods. Model Simul Mater Sci Eng
159, 81–94.

Spencer, J. & Humphreys, C. (1980). A multiple-scattering transport-theory for electron channeling patterns. Philos Mag A
42, 433–451.

Szilagyi, M. (1988). Electron and Ion Optics. New York: Plenum Press.

Trager-Cowan, C., Sweeney, F., Trimby, P., Day, A., Gholinia, A., Schmidt, N., Parbrook, P., Wilkinson, A. & Watson, I.M. (2007). Electron backscatter diffraction and electron channeling contrast imaging of tilt and dislocations in nitride thin films. Phys Rev B
75, 085301.

Van Essen, C. & Schulson, E. (1969). Selected area channelling patterns in the scanning electron microscope. J Mater Sci
4, 336–339.

Van Essen, C., Schulson, E. & Donaghay, R. (1970). Electron channelling patterns from small (10 ^m) selected areas in the scanning electron microscope. Nature
255, 847–848.

Winkelmann, A., Schröter, B. & Richter, W. (2003). Dynamical simulations of zone axis electron channelling patterns of cubic silicon carbide. Ultramicroscopy
98, 1–7.

Wright, S., Nowell, M., Lindeman, S., Camus, P., De Graef, M. & Jackson, M. (2015). Introduction and comparison of new EBSD post-processing methodologies. Ultramicroscopy
159, 81–94.

Yershova, A., Jain, S., LaValle, S. & Mitchell, J. (2010). Generating uniform incremental grids on SO(3) using the Hopf fibration. Int J Robot Res
29, 801–812.

Zaefferer, S. & Elhami, N. (2014). Theory and application of electron channelling contrast imaging under controlled diffraction conditions. Acta Mater
75, 20–50.