Skip to main content Accessibility help

Detection of Single Atoms and Buried Defects in Three Dimensions by Aberration-Corrected Electron Microscope with 0.5-Å Information Limit

  • C. Kisielowski (a1), B. Freitag (a2), M. Bischoff (a2), H. van Lin (a2), S. Lazar (a2), G. Knippels (a2), P. Tiemeijer (a2), M. van der Stam (a2), S. von Harrach (a2), M. Stekelenburg (a2), M. Haider (a3), S. Uhlemann (a3), H. Müller (a3), P. Hartel (a3), B. Kabius (a4), D. Miller (a4), I. Petrov (a5), E.A. Olson (a5), T. Donchev (a5), E.A. Kenik (a6), A.R. Lupini (a6), J. Bentley (a6), S.J. Pennycook (a6), I.M. Anderson (a6), A.M. Minor (a1), A.K. Schmid (a1), T. Duden (a1), V. Radmilovic (a1), Q.M. Ramasse (a1), M. Watanabe (a1), R. Erni (a1), E.A. Stach (a1), P. Denes (a1) and U. Dahmen (a1)...


The ability of electron microscopes to analyze all the atoms in individual nanostructures is limited by lens aberrations. However, recent advances in aberration-correcting electron optics have led to greatly enhanced instrument performance and new techniques of electron microscopy. The development of an ultrastable electron microscope with aberration-correcting optics and a monochromated high-brightness source has significantly improved instrument resolution and contrast. In the present work, we report information transfer beyond 50 pm and show images of single gold atoms with a signal-to-noise ratio as large as 10. The instrument's new capabilities were exploited to detect a buried Σ3 {112} grain boundary and observe the dynamic arrangements of single atoms and atom pairs with sub-angstrom resolution. These results mark an important step toward meeting the challenge of determining the three-dimensional atomic-scale structure of nanomaterials.


Corresponding author

Corresponding Author. E-mail:


Hide All
Bals, S., Kilaas, R. & Kisielowski, C. (2005). Nonlinear imaging using annular dark field TEM. Ultramicroscopy 104, 281289.
Borisevich, A.Y., Lupini, A.R., Travaglini, S. & Pennycook, S.J. (2006). Depth sectioning of aligned crystals with the aberration-corrected scanning transmission electron microscope. J Electron Microsc 55, 712.
Coene, W., Janssen, G., Op De Beeck, M. & Van Dyck, D. (1992). Phase retrieval through focus variation for ultra-resolution in field-emission transmission electron microscopy. Phys Rev Lett 69, 37433746.
Cowley, J.M. & Moodie, A.F. (1957). The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Cryst 10, 609619.
den Dekker, A.J. & van den Bos, A. (1997). Resolution: A survey. J Opt Soc Am A 14, 547557.
Feynman, R.P. (1960). There's plenty of room at the bottom. Eng Sci 23, 2223.
Frigo, S.P., Levine, Z.H. & Zaluzec, N.J. (2002). Submicron imaging of buried integrated circuit structures using scanning confocal electron microscopy. Appl Phys Lett 81, 21122114
Haider, M., Uhlemann, S., Schwan, E., Rose, H., Kabius, B. & Urban, K. (1998). Electron microscopy image enhanced. Nature 392, 768769.
Haider, M., Uhlemann, S. & Zach, J. (2000). Upper limits for the residual aberrations of a high-resolution aberration-corrected STEM. Ultramicroscopy 81, 163175.
Hetherington, C.J.D., Chang, L-Y., Nellist, P.D., Gontard, L.C., Dunin-Borkowski, R. & Kirkland, A.I. (2008). High-resolution TEM and the application of direct and indirect aberration-correction. Microsc Microanal 14, 6067.
Hsieh, W.K., Chen, F.R., Kai, J.J. & Kirkland, A.I. (2004). Resolution extension and exit wave reconstruction in complex HREM. Ultramicroscopy 98, 99114.
Kimoto, K., Nakamura, K., Aizawa, S., Isakozawa, S. & Matsui, Y. (2007). Development of dedicated STEM with high stability. J Electron Microsc 56, 1720.
Kisielowski, C., Hetherington, C.J.D., Wang, Y.C., Kilaas, R., O'Keefe, M.A. & Thust, A. (2001). Imaging columns of the light elements carbon, nitrogen and oxygen with sub-Ångstrom resolution. Ultramicroscopy 89, 243263.
Lentzen, M. (2008). Contrast transfer and limits for sub-Ångstrom high-resolution transmission electron microscopy. Microsc Microanal 14, 1626.
Muller, A.D., Fitting Kourkoutis, L., Murfitt, M., Song, J.H., Hwang, H.Y., Silcox, J., Dellby, N. & Krivanek, O.L. (2008). Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 10731076.
Müller, H., Uhlemann, S., Hartel, P. & Haider, M. (2006). Advancing the hexapole C s-corrector for the scanning transmission electron microscope. Microsc Microanal 12, 442455.
Nellist, P.D., Chisholm, M.F., Dellby, N., Krivanek, O.L., Murfitt, M.F., Szilagyi, Z.S., Lupini, A.R., Borisevich, A., Sides, W.H. & Pennycook, S.J. (2004). Direct sub-angstrom imaging of a crystal lattice. Science 305, 1741.
Nellist, P.D., Cosgriff, E.C., Behan, G. & Kirkland, A.I. (2008). Imaging modes for scanning confocal electron microscopy in a double aberration-corrected transmission electron microscope. Micros Microanal 14, 8288.
Peng, Y., Oxley, M.P., Lupini, A.R., Chisholm, M.F. & Pennycook, S.J. (2008). Spatial resolution and information transfer in scanning transmission electron microscopy. Microsc Microanal 14, 3647.
Sawada, H., Hosokawa, F., Kaneyama, T., Ishizawa, T., Terao, M., Kawazoe, M., Sannomiya, T., Tomita, T., Kondo, Y., Tanaka, T., Oshima, Y., Tanishiro, Y., Yamamoto, N. & Takayanagi, K. (2007). Achieving 63pm resolution in scanning transmission electron microscope with spherical aberration corrector. Japan J Appl Phys 46, L568L570.
Scherzer, O. (1936). Über einige Fehler von Elektronenlinsen. Z Phys 101, 593603.
Smith, D.J. (1997). The realization of atomic resolution with the electron microscope. Rep Prog Phys 60, 15131580.
Smith, D.J. (2008). Development of aberration-corrected electron microscopy. Microsc Microanal 14, 215
Tiemeijer, P.C. (1999). Measurement of Coulomb interactions in an electron beam monochromator. Ultramicroscopy 78, 5362.
Van Aert, S., Van Dyck, D. & den Dekker, A.J. (2006). Resolution of coherent and incoherent imaging systems reconsidered—Classical criteria and a statistical alternative. Optics Expr 14, 38303839.
van Benthem, K., Lupini, A.R., Oxley, M.P., Findlay, S.D., Allen, L.J. & Pennycook, S.J. (2006). Three-dimensional ADF imaging of individual atoms by through-focal series scanning transmission electron microscopy. Ultramicroscopy 106, 1092.
Westmacott, K.H., Hinderberger, S., Radetic, S.T. & Dahmen, U. (1999). PVD growth of fcc metal films on single crystal Si and Ge substrates. Mat Res Soc Symp Proc 562, 93102.



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed