Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-17T23:13:04.507Z Has data issue: false hasContentIssue false

Depth-Dependent Imaging of Individual Dopant Atoms in Silicon

Published online by Cambridge University Press:  17 March 2004

P.M. Voyles
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974-0636, USA P.M. Voyles is now at the Department of Materials Science and Engineering, University of Wisconsin–Madison, 1509 University Ave., Madison, WI 53706, USA.
D.A. Muller
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974-0636, USA
E.J. Kirkland
Affiliation:
School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
Get access

Abstract

We have achieved atomic-resolution imaging of single dopant atoms buried inside a crystal, a key goal for microelectronic device characterization, in Sb-doped Si using annular dark-field scanning transmission electron microscopy. In an amorphous material, the dopant signal is largely independent of depth, but in a crystal, channeling of the electron probe causes the image intensity of the atomic columns to vary with the depths of the dopants in each column. We can determine the average dopant concentration in small volumes, and, at low concentrations, the depth in a column of a single dopant. Dopant atoms can also serve as tags for experimental measurements of probe spreading and channeling. Both effects remain crucial even with spherical aberration correction of the probe. Parameters are given for a corrected Bloch-wave model that qualitatively describes the channeling at thicknesses <20 nm, but does not account for probe spreading at larger thicknesses. In thick samples, column-to-column coupling of the probe can make a dopant atom appear in the image in a different atom column than its physical position.

Type
Materials Applications
Copyright
© 2004 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, L.J., Findlay, S.D., Oxley, M.P., & Rossouw, C.J. (2003). Lattice-resolution contrast from a focused coherent electron probe I. Ultramicroscopy 96, 4763.CrossRefGoogle Scholar
Amali, A. & Rez, P. (1997). Theory of lattice resolution in high-angle annular dark-field images. Microsc Microanal 3, 2846.Google Scholar
Barkema, G.T. & Mousseau, N.M. (2000). High-quality continuous random networks. Phys Rev B 64, 245214.CrossRefGoogle Scholar
Batson, P.E., Delby, N., & Krivanek, O.L. (2002). Sub-ångstrom resolution using aberration corrected electron optics. Nature 418, 618620.Google Scholar
Boothroyd, C.B. (1998). Why don't high-resolution simulations and images match? J Microsc 190, 99108.Google Scholar
Crewe, A.V., Wall, J., & Langmore, J. (1970). Visibility of single atoms. Science 168, 13381340.CrossRefGoogle Scholar
De Meulenaere, P., Van Dyck, D., Van Tendeloo, G., & Van Landuyt, J. (1995). Dynamical electron diffraction in substitutionally disordered column structures. Ultramicroscopy 60(1), 171185.CrossRefGoogle Scholar
Fahey, P.M., Griffin, P.B., & Plummer, J.D. (1989). Point defects and dopant diffusion in silicon. Rev Mod Phys 61, 289384.CrossRefGoogle Scholar
Fertig, J. & Rose, H. (1981). Resolution and contrast of crystalline objects in high-resolution scanning transmission electron microscopy. Optik 59, 407429.Google Scholar
Findlay, S.D., Allen, L.J., Oxley, M.P., & Rossouw, C.J. (2003). Lattice-resolution contrast from a focused coherent electron probe II. Ultramicroscopy 96, 6581.CrossRefGoogle Scholar
Goldstein, J.I., Costley, J.L., & Lorimer, C.W. (1977). Quantitative X-ray analysis in the electron microscope. In Scanning Electron Microscopy, Jahari, O. (Ed.), pp. 315324. Chicago.
Gossmann, H.-J., Rafferty, C.S., & Keys, P. (2000). Junctions for deep sub-100 nm MOS: How far will ion implantation take us? Mat Res Soc Symp 610, B1.2.1B1.2.10.Google Scholar
Hillyard, S.E. & Silcox, J. (1995). Detector geometry, thermal diffuse scattering and strain effects in ADF STEM imaging. Ultramicroscopy 58, 617.CrossRefGoogle Scholar
Hirsch, P., Howie, A., Nicholson, R., Pashley, D.W., & Whelan, M.J. (1965). Electron Microscopy of Thin Crystals. Malabar, Florida: Krieger Publishing Company.
Howie, A. (1967). Diffraction channeling of fast electrons and positrons in crystals. Phil Mag 14, 223237.Google Scholar
Howie, A. (1979). Image contrast and localized signal selection techniques. J Microsc 17, 1123.CrossRefGoogle Scholar
Kirkland, E.J. (1998). Advanced Computing in Electron Microscopy. New York: Plenum.CrossRef
Kirkland, E.J., Loane, R.F., & Silcox, J. (1987). Simulation of annular dark field STEM images using a modified multislice method. Ultramicroscopy 23, 7796.CrossRefGoogle Scholar
Loane, R.F., Kirkland, E.J., & Silcox, J. (1988). Visibility of single heavy atoms on thin crystalline silicon in simulated annular dark field. Acta Cryst A 44, 912927.CrossRefGoogle Scholar
Loane, R.F., Xu, P., & Silcox, J. (1991). Thermal vibrations in convergent-beam electron diffraction. Acta Cryst A 47, 267278.CrossRefGoogle Scholar
Muller, D.A., Edwards, B., Kirkland, E.J., & Silcox, J. (2001). Simulation of thermal diffuse scattering including a detailed phonon dispersion curve. Ultramicroscopy 86, 371380.CrossRefGoogle Scholar
Muller, E.W. (1957). Study of atomic structure of metal surfaces in the field ion microscope. J Appl Phys 28, 16.Google Scholar
Nakamura, K., Kakibayashi, H., Kanehori, K., & Tanaka, N. (1997). Position dependence of the visibility of a single gold atom in silicon crystals in HAADF-STEM image simulation. J Elec Micros 46, 3343.CrossRefGoogle Scholar
Nellist, P.D. & Pennycook, S.J. (1996). Direct imaging of the atomic configuration of ultradispersed catalysts. Science 274, 413415.CrossRefGoogle Scholar
Nellist, P.D. & Pennycook, S.J. (1999). Incoherent imaging using dynamically scattered coherent electrons. Ultramicroscopy 78, 111124.CrossRefGoogle Scholar
Packan, P.A. (1999). Pushing the limits. Science 285, 20792081.CrossRefGoogle Scholar
Pennycook, S.J. & Jesson, D.E. (1990). High-resolution incoherent imaging of crystals. Phys Rev Lett 64, 938941.CrossRefGoogle Scholar
Pennycook, S.J. & Narayan, J. (1984). Metastable doping behavior in antimony-implanted (100) silicon. Appl Phys Lett 45, 385387.CrossRefGoogle Scholar
Pennycook, S.J., Rafferty, C.S., & Nellist, P.D. (2000). Z-contrast imaging in an aberration-corrected scanning transmission electron microscopy. Microsc Microanal 6, 343352.CrossRefGoogle Scholar
Press, W.H., Teukolsky, S.A., Vetterling, W.A., & Flannery, B.P. (1992). Numerical Recipes in C. Cambridge, UK: Cambridge University Press.
Rafferty, B., Nellist, P.D., & Pennycook, S.J. (2001). On the origin of transverse incoherence in Z-contrast STEM. J Elec Microsc 50, 227233.CrossRefGoogle Scholar
Treacy, M.M.J. & Rice, S.B. (1989). Catalyst particle sizes from Rutherford scattered intensities. J Microsc 156, 211234.CrossRefGoogle Scholar
Vanfleet, R.R., Robertson, M., McKay, M., & Silcox, J. (1998). Prospects for single atom sensitivity measurements of dopant levels in silicon. In Characterization and Metrology for ULSI Technology: 1998 International Conference, Seiler, D.G., Diebold, A.C., Bullis, W.M., Shaffner, T.J., McDonald, R. & Walters, E.J. (Eds.), pp. 901905. Woodbury, New York: American Institute of Physics.CrossRef
Voyles, P.M., Muller, D.A., Grazul, J.L., Citrin, P.H., & Gossmann, H.-J.L. (2002). Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si. Nature 416, 826829.CrossRefGoogle Scholar