Skip to main content Accessibility help
×
Home

Depth Resolution Dependence on Sample Thickness and Incident Energy in On-Axis Transmission Kikuchi Diffraction in Scanning Electron Microscope (SEM)

  • Etienne Brodu (a1) (a2) and Emmanuel Bouzy (a1) (a2)

Abstract

Transmission Kikuchi diffraction is an emerging technique aimed at producing orientation maps of the structure of materials with a nanometric lateral resolution. This study investigates experimentally the depth resolution of the on-axis configuration, via a twinned silicon bi-crystal sample specifically designed and fabricated. The measured depth resolution varies from 30 to 65 nm in the range 10–30 keV, with a close to linear dependence with incident energy and no dependence with the total sample thickness. The depth resolution is explained in terms of two mechanisms acting concomitantly: generation of Kikuchi diffraction all along the thickness of the sample, associated with continuous absorption on the way out. A model based on the electron mean free path is used to account for the dependence with incident energy of the depth resolution. In addition, based on the results in silicon, the use of the mean absorption coefficient is proposed to predict the depth resolution for any atomic number and incident energy.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Depth Resolution Dependence on Sample Thickness and Incident Energy in On-Axis Transmission Kikuchi Diffraction in Scanning Electron Microscope (SEM)
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Depth Resolution Dependence on Sample Thickness and Incident Energy in On-Axis Transmission Kikuchi Diffraction in Scanning Electron Microscope (SEM)
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Depth Resolution Dependence on Sample Thickness and Incident Energy in On-Axis Transmission Kikuchi Diffraction in Scanning Electron Microscope (SEM)
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author. emmanuel.bouzy@univ-lorraine.fr

References

Hide All
Bhattacharyya, A. & Eades, J.A. (2009). Use of an energy filter to improve the spatial resolution of electron backscatter diffraction. Scanning 31, 114121.
Brodu, E., Bouzy, E. & Fundenberger, J.-J. (2017). Diffraction contrast dependence on sample thickness and incident energy in on-axis Transmission Kikuchi Diffraction in SEM. Ultramicroscopy 181, 123133.
Brodu, E., Bouzy, E., Fundenberger, J.-J., Guyon, J., Guitton, A. & Zhang, Y. (2017). On-axis TKD for orientation mapping of nanocrystalline materials in SEM. Mater Charact 130, 9296.
Brodusch, N., Demers, H. & Gauvin, R. (2013). Nanometres-resolution Kikuchi patterns from materials science specimens with transmission electron forward scatter diffraction in the scanning electron microscope. J Microsc 250, 114.
Crewe, A.V., Wall, J. & Langmore, J. (1970). Visibility of single atoms. Science 168, 13381340.
Deal, A., Hooghan, T. & Eades, A. (2008). Energy-filtered electron backscatter diffraction. Ultramicroscopy 108, 116125.
Dingley, D. (2004). Progressive steps in the development of electron backscatter diffraction and orientation imaging microscopy. J Micros 213, 214224.
Drouin, D., Couture, A.R., Joly, D., Tastet, X., Aimez, V. & Gauvin, R. (2007). CASINO V2.42 – A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning 29, 92101.
Fundenberger, J.J., Bouzy, E., Goran, D., Guyon, J., Yuan, H. & Morawiec, A. (2016). Orientation mapping by transmission-SEM with an on-axis detector. Ultramicroscopy 161, 1722.
Fundenberger, J.-J., Morawiec, A., Bouzy, E. & Lecomte, J.-S. (2003). Polycrystal orientation maps from TEM. Ultramicroscopy 96, 127137.
Germer, L.H. (1939). Electron diffraction studies of thin films. I. Structure of very thin films. Phys Rev 56, 58–71.
Hall, C.R. & Hirsch, P.B. (1965). Effect of thermal diffuse scattering on propagation of high energy electrons through crystals. Proc R Soc A 286(1962), 158177.
Hashimoto, H. (1964). Energy dependence of extinction distance and transmissive power for electron waves in crystals. J Appl Phys 35, 277.
Ichimiya, A. & Lehmpfuhl, G. (1978). Axial channeling in electron diffraction. Zeitschrift für Naturforschung 33a, 269281.
Keller, R.R. & Geiss, R.H. (2012). Transmission EBSD from 10 nm domains in a scanning electron microscope. J Microsc 245, 245251.
Mayol, R. & Salvat, F. (1997). Total and transport cross sections for elastic scattering of electrons by atoms. Atomic Data Nuclear Data Tables 65, 55154.
Morawiec, A., Bouzy, E., Paul, H. & Fundenberger, J.-J. (2014). Orientation precision of TEM-based orientation mapping techniques. Ultramicroscopy 136, 107118.
Ren, S.X., Kenik, E.A., Alexander, K.B. & Goyal, A. (1998). Exploring spatial resolution in electron back-scattered diffraction experiments via Monte Carlo simulation. Microsc Microanal 4, 1522.
Reimer, L. (1997). Transmission Electron Microscopy: Physics of Image Formation and Microanalysis, Vol. 36 (4th ed.). Berlin: Springer Series in Optical Sciences.
Rice, K.P., Keller, R.R. & Stoykovich, M.P. (2014). Specimen-thickness effects on transmission Kikuchi patterns in the scanning electron microscope. J Microsc 254, 129136.
Shinotsuka, H., Tanuma, S., Powell, C.J. & Penn, D.R. (2015). Calculations of electron inelastic mean free paths. X. Data for 41 elemental solids over the 50eV to 200keV range with the relativistic full Penn algorithm. Surf Interf Anal 47, 871888.
Sneddon, G.C., Trimby, P.W. & Cairney, J.M. (2016). Transmission Kikuchi diffraction in a scanning electron microscope: A review. Mater Sci Eng R 110, 112.
Sneddon, G., Trimby, P. & Cairney, J. (2017). The influence of microscope and specimen parameters on the spatial resolution of transmission Kikuchi diffraction. Microsc Microanal 23(Suppl 1), 532–533.
Spence, J.C.H. & Zuo, J.M. (1992). Electron Microdiffraction. New York: Springer Science + Business Media New York.
Suzuki, S. (2013). Features of transmission EBSD and its application. JOM 65, 12541263.
Tanuma, S., Powell, C.J. & Penn, D.R. (2011). Calculations of electron inelastic mean free paths. IX. Data for 41 elemental solids over the 50 eV to 30 keV range. Surf Interf Anal 43, 689713.
Tee, I., Li, K., Liu, P., Du, A., Seah, S. & Fidelia, T. (2009). Study of low-kv cleaning method to improve TEM samples prepared by FIB. In IEEE Proceedings of 16th IPFA, pp. 552–554. Nanjing, China: IEEE.
Trimby, W. (2012). Orientation mapping of nanostructured materials using transmission Kikuchi diffraction in the scanning electron microscope. Ultramicroscopy 12, 1624.
Trimby, P.W., Cao, Y., Chen, Z., Han, S., Hemker, K.J., Lian, J., Liao, X., Rottmann, P., Samudrala, S., Sun, J., Wang, J.T., Wheeler, J. & Cairney, J.M. (2014). Characterizing deformed ultrafine-grained and nanocrystalline materials using transmission Kikuchi diffraction in a scanning electron microscope. Acta Mater 62, 6980.
van Bremen, R., Ribas Gomes, D., de Jeer, L.T.H., Ocelík, V. & De Hosson, J.T.M. (2016). On the optimum resolution of transmission-electron backscattered diffraction (t-EBSD). Ultramicroscopy 160, 256264.
Vespucci, S., Winkelmann, A., Mingard, K., Maneuski, D., O’Shea, V. & Trager-Cowan, C. (2017). Exploring transmission Kikuchi diffraction using a Timepix detector. J Instrum 12, 18.
Vespucci, S., Winkelmann, A., Naresh-Kumar, G., Mingard, K.P., Maneuski, D., Edwards, P.R., Day, A.P., O’Shea, V. & Trager-Cowan, C. (2015). Digital direct electron imaging of energy-filtered electron backscatter diffraction patterns. Phys Rev B 92, 205301.
Wang, Y.Z., Kong, M.G., Liu, Z.W., Lin, C.C. & Zeng, Y. (2016). Effect of microscope parameter and specimen thickness of spatial resolution of transmission electron backscatter diffraction. J Microsc 264, 3440.
Wilkinson, A.J., Moldovan, G., Britton, T.B., Bewick, A., Clough, R. & Kirkland, A.I. (2013). Direct detection of electron backscatter diffraction pattern. Phys Rev Lett 111, 065506.
Williams, D.B. & Barry Carter, C. (1996). Transmission Electron Microscopy – A Text Book for Material Science. New York: Springer Science.
Winkelmann, A. (2010). Principles of depth-resolved Kikuchi pattern simulation for electron backscatter diffraction. J Microsc 239, 3245.
Wisniewski, W., Saager, S., Böbenroth, A. & Rüssel, C. (2017). Experimental evidence concerning the significant information depth of electron backscatter diffraction (EBSD). Ultramicroscopy 173, 19.
Yamamoto, T. (1977). Experimental aspects of electron channeling patterns in scanning electron microscopy II. Estimation of contrast depth. Phys Status Solidi A 44, 467.
Yuan, H., Brodu, E., Chen, C., Bouzy, E., Fundenberger, J.-J. & Toth, L.S. (2017). On-axis versus off-axis transmission Kikuchi diffraction technique: Application to the characterization of severe plastic deformation induced ultrafine grained microstructures. J Microsc 267, 7080.
Zaefferer, S. (2007). On the formation mechanisms, spatial resolution and intensity of backscatter Kikuchi patterns. Ultramicroscopy 107, 245266.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed