Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-22T06:27:26.676Z Has data issue: false hasContentIssue false

Cs-Corrected Scanning Transmission Electron Microscopy Investigation of Dislocation Core Configurations at a SrTiO3/MgO Heterogeneous Interface

Published online by Cambridge University Press:  01 May 2013

Yuanyuan Zhu
Affiliation:
Program of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3128, USA
Chengyu Song
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Andrew M. Minor
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
Haiyan Wang*
Affiliation:
Program of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3128, USA Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 7843-3128, USA
*
*Corresponding author. E-mail: wangh@ece.tamu.edu
Get access

Abstract

Heterostructures and interfacial defects in a 40-nm-thick SrTiO3 (STO) film grown epitaxially on a single-crystal MgO (001) were investigated using aberration-corrected scanning transmission electron microscopy and geometric phase analysis. The interface of STO/MgO was found to be of the typical domain-matching epitaxy with a misfit dislocation network having a Burgers vector of ½ aSTO ⟨100⟩. Our studies also revealed that the misfit dislocation cores at the heterogeneous interface display various local cation arrangements in terms of the combination of the extra-half inserting plane and the initial film plane. The type of the inserting plane, either the SrO or the TiO2 plane, alters with actual interfacial conditions. Contrary to previous theoretical calculations, the starting film planes were found to be dominated by the SrO layer, i.e., a SrO/MgO interface. In certain regions, the starting film planes change to the TiO2/MgO interface because of atomic steps at the MgO substrate surface. In particular, four basic misfit dislocation core configurations of the STO/MgO system have been identified and discussed in relation to the substrate surface terraces and possible interdiffusion. The interface structure of the system in reverse—MgO/STO—is also studied and presented for comparison.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balzar, D., Ramakrishnan, P.A. & Hermann, A.M. (2004). Defect-related lattice strain and the transition temperature in ferroelectric thin films. Phys Rev B 70, 09210310921034.CrossRefGoogle Scholar
Casek, P., Bouette-Russo, S., Finocchi, F. & Noguera, C. (2004). SrTiO3(001) thin films on MgO(001): A theoretical study. Phys Rev B 69, 0854111. CrossRefGoogle Scholar
Cazottes, S., Zhang, Z.L., Daniel, R., Chawla, J.S., Gall, D. & Dehm, G. (2010). Structural characterization of a Cu/MgO(001) interface using C-S-corrected HRTEM. Thin Solid Films 519, 16621667.CrossRefGoogle Scholar
Cheng, C., Kunc, K., Kresse, G. & Hafner, J. (2002). SrTiO3/MgO(001) and MgO/SrTiO3(001) systems: Energetics and stresses. Phys Rev B 66, 08541910854198.CrossRefGoogle Scholar
Chu, M.W., Szafraniak, I., Scholz, R., Harnagea, C., Hesse, D., Alexe, M. & Gosele, U. (2004). Impact of misfit dislocations on the polarization instability of epitaxial nanostructured ferroelectric perovskites. Nat Mater 3, 8790.CrossRefGoogle ScholarPubMed
Chung, J.H., Lian, G.D. & Rabenberg, L. (2010). Practical and reproducible mapping of strains in Si devices using geometric phase analysis of annular dark-field images from scanning transmission electron microscopy. IEEE Electron Device Lett 31, 854856.CrossRefGoogle Scholar
Dagotto, E. (2005). Complexity in strongly correlated electronic systems. Science 309, 257262.CrossRefGoogle ScholarPubMed
Dahmen, U., Erni, R., Radmilovic, V., Kisielowski, C., Rossell, M.D. & Denes, P. (2009). Background, status and future of the transmission electron aberration-corrected microscope project. Philos Trans R Soc A 367, 37953808.CrossRefGoogle ScholarPubMed
Dodson, B.W. (1988). Nature of misfit dislocation sources in strained-layer semiconductor structures. Appl Phys Lett 53, 394396.CrossRefGoogle Scholar
Dong, Z.S. & Zhao, C.W. (2010). Measurement of strain fields in an edge dislocation. Physica B 405, 171174.CrossRefGoogle Scholar
Erni, R., Rossell, M.D., Kisielowski, C. & Dahmen, U. (2009). Atomic-resolution imaging with a sub-50-pm electron probe. Phys Rev Lett 102, 09610110961014.CrossRefGoogle ScholarPubMed
Ernst, F. (1995). Metal-oxide interfaces. Mater Sci Eng R-Rep 14, 97156.CrossRefGoogle Scholar
Escamilla, R., Akachi, T., Gomez, R., Marquina, V., Marquina, M.L. & Ridaura, R. (2002). Suppression of T-c in the (Y0.9Ca0.1)Ba2Cu4−x Fe x O8 system. Supercond Sci Technol 15, 10741080.CrossRefGoogle Scholar
Fitting, L., Thiel, S., Schmehl, A., Mannhart, J. & Muller, D.A. (2006). Subtleties in ADF imaging and spatially resolved EELS: A case study of low-angle twist boundaries in SrTiO3 . Ultramicroscopy 106, 10531061.CrossRefGoogle ScholarPubMed
Hirth, J.P. & Pond, R.C. (1996). Steps, dislocations and disconnections as interface defects relating to structure and phase transformations. Acta Mater 44, 47494763.CrossRefGoogle Scholar
Huijben, M., Brinkman, A., Koster, G., Rijnders, G., Hilgenkamp, H. & Blank, D.H.A. (2009). Structure-property relation of SrTiO3/LaAlO3 interfaces. Adv Mater 21, 16651677.CrossRefGoogle Scholar
Hytch, M.J., Putaux, J.L. & Penisson, J.M. (2003). Measurement of the displacement field of dislocations to 0.03 angstrom by electron microscopy. Nature 423, 270273.CrossRefGoogle Scholar
Hytch, M.J., Snoeck, E. & Kilaas, R. (1998). Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131146.CrossRefGoogle Scholar
Jia, C.L., Mi, S.B., Urban, K., Vrejoiu, I., Alexe, M. & Hesse, D. (2009). Effect of a single dislocation in a heterostructure layer on the local polarization of a ferroelectric layer. Phys Rev Lett 102, 11760111176014.CrossRefGoogle Scholar
Jia, C.L., Thust, A. & Urban, K. (2005). Atomic-scale analysis of the oxygen configuration at a SrTiO3 dislocation core. Phys Rev Lett 95, 22550612255064.CrossRefGoogle Scholar
Kienzle, D., Quezada, B. & Marks, L. (2009). SrTiO3 (001) (root 13 × root 13) R33.7 degrees surface reconstruction. Microsc Microanal 15, 10221023.CrossRefGoogle Scholar
Kim, D.W., Kim, D.H., Kang, B.S., Noh, T.W., Lee, D.R. & Lee, K.B. (1999). Roles of the first atomic layers in growth of SrTiO3 films on LaAlO3 substrates. Appl Phys Lett 74, 21762178.CrossRefGoogle Scholar
Kisielowski, C., Freitag, B., Bischoff, M., van Lin, H., Lazar, S., Knippels, G., Tiemeijer, P., van der Stam, M., von Harrach, S., Stekelenburg, M., Haider, M., Uhlemann, S., Muller, H., Hartel, P., Kabius, B., Miller, D., Petrov, I., Olson, E.A., Donchev, T., Kenik, E.A., Lupini, A.R., Bentley, J., Pennycook, S.J., Anderson, I.M., Minor, A.M., Schmid, A.K., Duden, T., Radmilovic, V., Ramasse, Q.M., Watanabe, M., Erni, R., Stach, E.A., Denes, P. & Dahmen, U. (2008). Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscope with 0.5-angstrom information limit. Microsc Microanal 14, 469477.CrossRefGoogle ScholarPubMed
Klenov, D.O. & Stemmer, S. (2006). Contributions to the contrast in experimental high-angle annular dark-field images. Ultramicroscopy 106, 889901.CrossRefGoogle Scholar
Klie, R.F., Walkosz, W., Yang, G. & Zhao, Y. (2009). Aberration-corrected Z-contrast imaging of SrTiO3 dislocation cores. J Electron Microsc 58, 185191.CrossRefGoogle ScholarPubMed
Li, H., Roytburd, A.L., Alpay, S.P., Tran, T.D., Salamanca-Riba, L. & Ramesh, R. (2001). Dependence of dielectric properties on internal stresses in epitaxial barium strontium titanate thin films. Appl Phys Lett 78, 23542356.CrossRefGoogle Scholar
McMitchell, S.R.C., Tse, Y.Y., Bouyanfif, H., Jackson, T.J., Jones, I.P. & Lancaster, M.J. (2009). Two-dimensional growth of SrTiO3 thin films on (001) MgO substrates using pulsed laser deposition and reflection high energy electron diffraction. Appl Phys Lett 95, 17410211741023.CrossRefGoogle Scholar
Mi, S.B., Jia, C.L., Faley, M.I., Poppe, U. & Urban, K. (2007). High-resolution electron microscopy of microstructure of SrTiO3/BaZrO3 bilayer thin films on MgO substrates. J Crystallogr Growth 300, 478482.CrossRefGoogle Scholar
Narayan, J. & Larson, B.C. (2003). Domain epitaxy: A unified paradigm for thin film growth. J Appl Phys 93, 278285.CrossRefGoogle Scholar
Reiner, J.W., Walker, F.J. & Ahn, C.H. (2009). Materials science atomically engineered oxide interfaces. Science 323, 10181019.CrossRefGoogle ScholarPubMed
Rouviere, J.L. & Sarigiannidou, E. (2005). Theoretical discussions on the geometrical phase analysis. Ultramicroscopy 106, 117.CrossRefGoogle ScholarPubMed
Sanchez, A.M., Galindo, P.L., Kret, S., Falke, M., Beanland, R. & Goodhew, P.J. (2006). An approach to the systematic distortion correction in aberration-corrected HAADF images. J Microsc-Oxf 221, 17.CrossRefGoogle Scholar
Sanchez, A.M., Lozano, J.G., Garcia, R., Herrera, M., Ruffenach, S., Briot, O. & Gonzalez, D. (2007). Strain mapping at the atomic scale in highly mismatched heterointerfaces. Adv Funct Mater 17, 25882593.CrossRefGoogle Scholar
Sayle, D.C. & Watson, G.W. (2001). The atomistic structures of MgO/SrTiO3(001) and BaO/SrTiO3(001) using simulated amorphization and recrystallization. J Phys Chem B 105, 55065514.CrossRefGoogle Scholar
Schlom, D.G., Chen, L.Q., Eom, C.B., Rabe, K.M., Streiffer, S.K. & Triscone, J.M. (2007). Strain tuning of ferroelectric thin films. Ann Rev Mater Res 37, 589626.CrossRefGoogle Scholar
Szot, K., Speier, W., Bihlmayer, G. & Waser, R. (2006). Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 . Nat Mater 5, 312320.CrossRefGoogle ScholarPubMed
Tse, Y.Y., McMitchell, S.R.C., Jackson, T.J., Jones, I.P. & Genc, A. (2010). Microstructural investigation of strontium titanate films grown by interval pulsed laser deposition. In Electron Microscopy and Analysis Group Conference 2009, Baker, R.T. (Ed.), pp. 01204010120404.Google Scholar
Zhang, Z.L., Sigle, W. & Ruhle, M. (2002). Atomic and electronic characterization of the a 100 dislocation core in SrTiO3 . Phys Rev B 66, 09410810941088.CrossRefGoogle Scholar