Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-21T19:19:41.347Z Has data issue: false hasContentIssue false

Correlation between Enterococcus faecalis Biofilms Development Stage and Quantitative Surface Roughness Using Atomic Force Microscopy

Published online by Cambridge University Press:  03 March 2008

Ricardo P. Santos
Affiliation:
Laboratório de Ciência e Tecnologia de Materiais (LCTM-UFC), Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60455-900 Fortaleza, Ceará, Brazil
Theodora T.P. Arruda
Affiliation:
Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60455-900 Fortaleza, Ceará, Brazil
Cibele B.M. Carvalho
Affiliation:
Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60455-900 Fortaleza, Ceará, Brazil
Victor A. Carneiro
Affiliation:
Laboratório de Moléculas Biologicamente Ativas (Biomol-Lab), Universidade Federal do Ceará, Caixa Postal 6020, Campus do Pici, 60455-900 Fortaleza, Ceará, Brazil
Lara Q.V. Braga
Affiliation:
Laboratório de Moléculas Biologicamente Ativas (Biomol-Lab), Universidade Federal do Ceará, Caixa Postal 6020, Campus do Pici, 60455-900 Fortaleza, Ceará, Brazil
Edson H. Teixeira
Affiliation:
Faculdade de Medicina/Sobral, Universidade Federal do Ceará, Av. Gerardo Rangel s/n, Campus do Derby, 62041-180 Sobral, Ceará, Brazil
Francisco V.S. Arruda
Affiliation:
Faculdade de Medicina/Sobral, Universidade Federal do Ceará, Av. Gerardo Rangel s/n, Campus do Derby, 62041-180 Sobral, Ceará, Brazil
Benildo S. Cavada
Affiliation:
Laboratório de Moléculas Biologicamente Ativas (Biomol-Lab), Universidade Federal do Ceará, Caixa Postal 6020, Campus do Pici, 60455-900 Fortaleza, Ceará, Brazil
Alexandre Havt
Affiliation:
Laboratório de Moléculas Biologicamente Ativas (Biomol-Lab), Universidade Federal do Ceará, Caixa Postal 6020, Campus do Pici, 60455-900 Fortaleza, Ceará, Brazil
Taianá M. de Oliveira
Affiliation:
Laboratório de Moléculas Biologicamente Ativas (Biomol-Lab), Universidade Federal do Ceará, Caixa Postal 6020, Campus do Pici, 60455-900 Fortaleza, Ceará, Brazil
Gustavo A. Bezerra
Affiliation:
Laboratório de Moléculas Biologicamente Ativas (Biomol-Lab), Universidade Federal do Ceará, Caixa Postal 6020, Campus do Pici, 60455-900 Fortaleza, Ceará, Brazil
Valder N. Freire
Affiliation:
Laboratório de Ciência e Tecnologia de Materiais (LCTM-UFC), Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60455-900 Fortaleza, Ceará, Brazil
Get access

Abstract

Biofilms are assemblages of microorganisms and their associated extracellular products at an interface and typically with an abiotic or biotic surface. The study of the morphology of biofilms is important because they are associated with processes of biofouling, corrosion, catalysis, pollutant transformation, dental caries, drug resistance, and so forth. In the literature, biofilms have been examined by atomic force microscopy (AFM), which has proven to be a potent tool to study different aspects of the biofilm development on solid surfaces. In this work, we used AFM to investigate topographical changes during the development process of Enterococcus faecalis biofilms, which were generated on sterile cellulose nitrate membrane (CNM) filters in brain heart infusion (BHI) broth agar blood plates after 24, 36, 72, 192, and 360 h. AFM height images showed topographical changes due to biofilm development, which were used to characterize several aspects of the bacterial surface, such as the presence of extracellular polymeric substance, and the biofilm development stage. Changes in the development stage of the biofilm were shown to correlate with changes in the surface roughness as quantified through the mean roughness.

Type
Research Article
Copyright
© 2008 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdullah, M., Ng, Y.-L., Gulabivala, K., Moles, D.R. & Spratt, D.A. (2005). Susceptibilities of two Enterococcus faecalis phenotypes to root canal medications. J Endodont 31, 3036.Google Scholar
Ahimou, F., Denis, F.A., Touhami, A. & Dufrêne, Y.F. (2002). Probing microbial cell surface charges by atomic force microscopy. Langmuir 18, 99379941.Google Scholar
Ahimou, F., Semmens, M.J., Novak, P.J. & Haugstad, G. (2007). Biofilm cohesiveness measurement using a novel atomic force microscopy methodology. Appl Env Microbio 73, 28972904.Google Scholar
Allison, D.G., Gilbert, P., Lappin-Scott, H.M. & Wilson, M. (Eds.). (2000). Community Structure and Co-operation in Biofilms. Cambridge, UK: Cambridge University Press.
Auerbach, I.D., Sorensen, C., Hansma, H.G. & Holden, P.A. (2000). Physical morphology and surface properties of unsaturated Pseudomonas putida biofilms. J Bacteriol 182, 38093815.Google Scholar
Beech, I.B., Smith, J.R., Steele, A.A., Penegar, I. & Campbell, S.A. (2002). The use of atomic force microscopy for studying interactions of bacterial biofilms with surfaces. Coll Surf Biointer 23, 231247.Google Scholar
Beveridge, T.J. & Grahan, L.L. (1991). Surface layers of bacteria. Microbiol Rev 55, 684705.Google Scholar
Binnig, G., Quate, C.F. & Gerber, C. (1986). Atomic force microscope. Phys Rev Lett 56, 930933.Google Scholar
Bustamante, C. & Keller, D. (1995). Scanning force microscopy in biology. Phys Today 48, 3238.Google Scholar
Camesano, T.A. & Abu-Lail, N.I. (2002). Heterogeneity in bacterial surface polysaccharides, probed on single-molecule basis. Biomacromolecules 3, 661667.Google Scholar
Camesano, T.A., Natan, M.J. & Logan, B.E. (2000). Observation of changes in bacterial cell morphology using tapping mode atomic force microscopy. Langmuir 16, 45634572.Google Scholar
Carniol, K. & Gilmore, M.S. (2004). Signal transduction, quorum—Sensing and extracellular protease activity in Enterococcus faecalis biofilm formation. J Bacteriol 186, 81618163.Google Scholar
Digital Instruments Veeco Metrology Group. (2001). Command Reference Manual—Software version 5.12 r3. Chadds Ford, PA: Digital Instruments Veeco Metrology Group.
Donlan, R.M. & Costerton, J.W. (2002). Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15, 167193.Google Scholar
Dufrêne, Y.F. (2002). Atomic force microscopy, a power tool in microbiology. J Bacteriol 184, 52055213.Google Scholar
Dufrêne, Y.F. (2004). Refining our perception of bacterial surfaces with the atomic force microscope. J Bacteriol 186, 32833285.Google Scholar
Firtel, M., Henderson, G. & Sokoplov, I. (2004). Nanosurgery: Observation of peptidoglycan strands in Lactobacillus helveticus cell walls. Ultramicroscopy 101, 105109.Google Scholar
Fischetti, V.A., Novick, R.P., Ferretti, J.J., Portnoy, D.A. & Rood, J.I. (Eds.). (2000). Gram-Positive Pathogens. Washington, DC: ASM Press.
George, S., Kisben, A. & Song, K.P. (2005). The role of environmental changes on monospecies biofilm formation on root canal wall by Enterococcus faecalis. J Endodon 31, 867872.Google Scholar
Gilbert, P.J., Das, J. & Foley, I. (1997). Biofilms susceptibility to antimicrobials. Adv Dent Res 11, 160167.Google Scholar
Hansma, H.G. & Pietrasanta, L. (1998). Atomic force microscopy and others scanning probe microscopies. Curr Opin Chem Biol 2, 579584.Google Scholar
Jena, B.P. & Horber, J.K.H. (Eds.). (2002). Methods in Cell Biology: Atomic Force Microscopy Cell Biology, vol. 68. London: Cambridge University Press.
Junior, A.S. & Teschke, O. (2005). Dynamics of the antimicrobial peptide PGLa action on Escherichia coli monitored by atomic force microscopy. World J Microbio Biotechnol 21, 11031110.Google Scholar
Kristich, C.J., Li, Y.-H., Cvitkovitch, D.G. & Dunny, G.M. (2004). Esp-independent biofilm formation by Enterococcus faecalis. J Bacteriol 186, 154163.Google Scholar
Lehman, E.L. (1975). Nonparametrics: Statistical Methods Based on Ranks. San Francisco: Holden-Day, Inc.
Lindman, H.R. (1974). Analysis of Variance in Complex Experimental Designs. San Francisco: W.H. Freeman Company.
Mendenhall, W., Wackerly, D.D. & Scheaffer, R.L. (1990). Mathematical Statistics with Applications. Boston: PWS-Kent Publishing Company.
Mohamed, J.A., Huang, W., Nallapareddy, S.R., Teng, F. & Murray, B.E. (2004). Influence of origin of isolates, especially endocarditis isolates, and various genes on biofilm formation by Enterococcus faecalis. Infect Immun 72, 36583663.Google Scholar
Morris, V.J., Kirby, A.R. & Gunning, A.P. (Eds.). (1999). Atomic Force Microscopy for Biologists. London: Imperial College Press.
O'Toole, G. (2003). To build a biofilm. J Bacteriol 185, 26872689.Google Scholar
O'Toole, G., Kaplan, H.B. & Kolter, R. (2000). Biofilm formation as microbial development. Annu Rev Microbiol 54, 4979.Google Scholar
Parsek, M.R. & Fuqua, C. (2004). Biofilms 2003: Emerging themes and challenges in studies of surface-associated microbial life. J Bacteriol 186, 44274440.Google Scholar
Pelletier, L.L., Jr. (1996). Microbiology of the circulatory system. In Medical Microbiology, 4th ed., Baron, S., Peake, R.C., James, D.A., Susman, M., Kennedy, C.A., Durson Singleton, M.J., Schuenke, S. (Eds.). Galveston, TX: University of Texas Medical Branch.
Razatos, A., Ong, Y., Sharma, M.M. & Georgiou, G. (1998). Molecular determinants of bacterial adhesion monitored by atomic force microscopy. Proc Natl Acad Sci USA 95, 1105911064.Google Scholar
Sayles, R.S. (1982). The Profile as a Random Process: Rough Surfaces. London: Longman.