Skip to main content Accessibility help
×
Home

Correlation between Enterococcus faecalis Biofilms Development Stage and Quantitative Surface Roughness Using Atomic Force Microscopy

  • Ricardo P. Santos (a1), Theodora T.P. Arruda (a2), Cibele B.M. Carvalho (a2), Victor A. Carneiro (a3), Lara Q.V. Braga (a3), Edson H. Teixeira (a4), Francisco V.S. Arruda (a4), Benildo S. Cavada (a3), Alexandre Havt (a3), Taianá M. de Oliveira (a3), Gustavo A. Bezerra (a3) and Valder N. Freire (a1)...

Abstract

Biofilms are assemblages of microorganisms and their associated extracellular products at an interface and typically with an abiotic or biotic surface. The study of the morphology of biofilms is important because they are associated with processes of biofouling, corrosion, catalysis, pollutant transformation, dental caries, drug resistance, and so forth. In the literature, biofilms have been examined by atomic force microscopy (AFM), which has proven to be a potent tool to study different aspects of the biofilm development on solid surfaces. In this work, we used AFM to investigate topographical changes during the development process of Enterococcus faecalis biofilms, which were generated on sterile cellulose nitrate membrane (CNM) filters in brain heart infusion (BHI) broth agar blood plates after 24, 36, 72, 192, and 360 h. AFM height images showed topographical changes due to biofilm development, which were used to characterize several aspects of the bacterial surface, such as the presence of extracellular polymeric substance, and the biofilm development stage. Changes in the development stage of the biofilm were shown to correlate with changes in the surface roughness as quantified through the mean roughness.

Copyright

Corresponding author

Corresponding author. E-mail: rpsantos2000@yahoo.com
Corresponding author. E-mail: valder@fisica.ufc.br

References

Hide All

REFERENCES

Abdullah, M., Ng, Y.-L., Gulabivala, K., Moles, D.R. & Spratt, D.A. (2005). Susceptibilities of two Enterococcus faecalis phenotypes to root canal medications. J Endodont 31, 3036.
Ahimou, F., Denis, F.A., Touhami, A. & Dufrêne, Y.F. (2002). Probing microbial cell surface charges by atomic force microscopy. Langmuir 18, 99379941.
Ahimou, F., Semmens, M.J., Novak, P.J. & Haugstad, G. (2007). Biofilm cohesiveness measurement using a novel atomic force microscopy methodology. Appl Env Microbio 73, 28972904.
Allison, D.G., Gilbert, P., Lappin-Scott, H.M. & Wilson, M. (Eds.). (2000). Community Structure and Co-operation in Biofilms. Cambridge, UK: Cambridge University Press.
Auerbach, I.D., Sorensen, C., Hansma, H.G. & Holden, P.A. (2000). Physical morphology and surface properties of unsaturated Pseudomonas putida biofilms. J Bacteriol 182, 38093815.
Beech, I.B., Smith, J.R., Steele, A.A., Penegar, I. & Campbell, S.A. (2002). The use of atomic force microscopy for studying interactions of bacterial biofilms with surfaces. Coll Surf Biointer 23, 231247.
Beveridge, T.J. & Grahan, L.L. (1991). Surface layers of bacteria. Microbiol Rev 55, 684705.
Binnig, G., Quate, C.F. & Gerber, C. (1986). Atomic force microscope. Phys Rev Lett 56, 930933.
Bustamante, C. & Keller, D. (1995). Scanning force microscopy in biology. Phys Today 48, 3238.
Camesano, T.A. & Abu-Lail, N.I. (2002). Heterogeneity in bacterial surface polysaccharides, probed on single-molecule basis. Biomacromolecules 3, 661667.
Camesano, T.A., Natan, M.J. & Logan, B.E. (2000). Observation of changes in bacterial cell morphology using tapping mode atomic force microscopy. Langmuir 16, 45634572.
Carniol, K. & Gilmore, M.S. (2004). Signal transduction, quorum—Sensing and extracellular protease activity in Enterococcus faecalis biofilm formation. J Bacteriol 186, 81618163.
Digital Instruments Veeco Metrology Group. (2001). Command Reference Manual—Software version 5.12 r3. Chadds Ford, PA: Digital Instruments Veeco Metrology Group.
Donlan, R.M. & Costerton, J.W. (2002). Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15, 167193.
Dufrêne, Y.F. (2002). Atomic force microscopy, a power tool in microbiology. J Bacteriol 184, 52055213.
Dufrêne, Y.F. (2004). Refining our perception of bacterial surfaces with the atomic force microscope. J Bacteriol 186, 32833285.
Firtel, M., Henderson, G. & Sokoplov, I. (2004). Nanosurgery: Observation of peptidoglycan strands in Lactobacillus helveticus cell walls. Ultramicroscopy 101, 105109.
Fischetti, V.A., Novick, R.P., Ferretti, J.J., Portnoy, D.A. & Rood, J.I. (Eds.). (2000). Gram-Positive Pathogens. Washington, DC: ASM Press.
George, S., Kisben, A. & Song, K.P. (2005). The role of environmental changes on monospecies biofilm formation on root canal wall by Enterococcus faecalis. J Endodon 31, 867872.
Gilbert, P.J., Das, J. & Foley, I. (1997). Biofilms susceptibility to antimicrobials. Adv Dent Res 11, 160167.
Hansma, H.G. & Pietrasanta, L. (1998). Atomic force microscopy and others scanning probe microscopies. Curr Opin Chem Biol 2, 579584.
Jena, B.P. & Horber, J.K.H. (Eds.). (2002). Methods in Cell Biology: Atomic Force Microscopy Cell Biology, vol. 68. London: Cambridge University Press.
Junior, A.S. & Teschke, O. (2005). Dynamics of the antimicrobial peptide PGLa action on Escherichia coli monitored by atomic force microscopy. World J Microbio Biotechnol 21, 11031110.
Kristich, C.J., Li, Y.-H., Cvitkovitch, D.G. & Dunny, G.M. (2004). Esp-independent biofilm formation by Enterococcus faecalis. J Bacteriol 186, 154163.
Lehman, E.L. (1975). Nonparametrics: Statistical Methods Based on Ranks. San Francisco: Holden-Day, Inc.
Lindman, H.R. (1974). Analysis of Variance in Complex Experimental Designs. San Francisco: W.H. Freeman Company.
Mendenhall, W., Wackerly, D.D. & Scheaffer, R.L. (1990). Mathematical Statistics with Applications. Boston: PWS-Kent Publishing Company.
Mohamed, J.A., Huang, W., Nallapareddy, S.R., Teng, F. & Murray, B.E. (2004). Influence of origin of isolates, especially endocarditis isolates, and various genes on biofilm formation by Enterococcus faecalis. Infect Immun 72, 36583663.
Morris, V.J., Kirby, A.R. & Gunning, A.P. (Eds.). (1999). Atomic Force Microscopy for Biologists. London: Imperial College Press.
O'Toole, G. (2003). To build a biofilm. J Bacteriol 185, 26872689.
O'Toole, G., Kaplan, H.B. & Kolter, R. (2000). Biofilm formation as microbial development. Annu Rev Microbiol 54, 4979.
Parsek, M.R. & Fuqua, C. (2004). Biofilms 2003: Emerging themes and challenges in studies of surface-associated microbial life. J Bacteriol 186, 44274440.
Pelletier, L.L., Jr. (1996). Microbiology of the circulatory system. In Medical Microbiology, 4th ed., Baron, S., Peake, R.C., James, D.A., Susman, M., Kennedy, C.A., Durson Singleton, M.J., Schuenke, S. (Eds.). Galveston, TX: University of Texas Medical Branch.
Razatos, A., Ong, Y., Sharma, M.M. & Georgiou, G. (1998). Molecular determinants of bacterial adhesion monitored by atomic force microscopy. Proc Natl Acad Sci USA 95, 1105911064.
Sayles, R.S. (1982). The Profile as a Random Process: Rough Surfaces. London: Longman.

Keywords

Correlation between Enterococcus faecalis Biofilms Development Stage and Quantitative Surface Roughness Using Atomic Force Microscopy

  • Ricardo P. Santos (a1), Theodora T.P. Arruda (a2), Cibele B.M. Carvalho (a2), Victor A. Carneiro (a3), Lara Q.V. Braga (a3), Edson H. Teixeira (a4), Francisco V.S. Arruda (a4), Benildo S. Cavada (a3), Alexandre Havt (a3), Taianá M. de Oliveira (a3), Gustavo A. Bezerra (a3) and Valder N. Freire (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed