Skip to main content Accessibility help
×
Home

A Comparative Study on the Self-Assembly of Peptide TGV-9 by In Situ Atomic Force Microscopy

  • Yaping Li (a1), Na Li (a2) (a3), Lei Wang (a1), Qinhua Lu (a1), Xiang Ji (a1) and Feng Zhang (a1) (a3) (a4)...

Abstract

Previous studies of amyloid diseases reported that the aggregating proteins share a similar conserved peptide sequence which can form the cross-β-sheet-containing nanostructures like nanofilaments. The template-assisted self-assembly (TASA) of peptides on inorganic substrates with different hydrophilicity could be an alternative approach to shed light on the fibrillization mechanism of proteins/peptides in vivo. To figure out the effect of interfaces on amyloid aggregation, we herein employed in situ atomic force microscopy (AFM) to investigate the self-assembling of a Parkinson disease-related core peptide sequence (TGV-9) on a hydrophobic liquid–solid interface via real-time observation of the dynamic fibrillization process. The results show that TGV-9 forms one-dimensional nanostructures on the surface of highly ordered pyrolytic graphite (HOPG) with three preferred growth orientations, which are consistent with the atomic lattice of HOPG, indicating an epitaxial growth or TASA. Conversely, the nanostructures formed in bulk solution can be free-standing nanofilaments, and the fibrillization mechanism is different from that on HOPG. These results could not only deepen the understanding of the protein/peptide aggregation mechanism but also benefit for the early diagnosis and clinic treatment of related diseases.

Copyright

Corresponding author

*Authors for correspondence: Xiang Ji, E-mail: jixiang@imust.cn; Feng Zhang, E-mail: fengzhang1978@hotmail.com

References

Hide All
Agnati, LF, Leo, G, Genedani, S, Piron, L, Rivera, A, Guidolin, D & Fuxe, K (2009). Common key-signals in learning and neurodegeneration: Focus on excito-amino acids, β-amyloid peptides and α-synuclein. J Neural Transm 116(8), 953974.
Aguzzi, A & O'Connor, T (2010). Protein aggregation diseases: Pathogenicity and therapeutic perspectives. Nat Rev Drug Discov 9(3), 237248.
Arce, FT, Jang, H, Ramachandran, S, Landon, PB, Nussinov, R & Lal, R (2011). Polymorphism of amyloid β peptide in different environments: Implications for membrane insertion and pore formation. Soft Matter 7(11), 5267.
Biancalana, M & Koide, S (2010). Molecular mechanism of Thioflavin-T binding to amyloid fibrils. BBA-Proteins Proteom 1804(7), 14051412.
Chaves, RS, Melo, TQ, Martins, SA & Ferrari, MF (2010). Protein aggregation containing beta-amyloid, alpha-synuclein and hyperphosphorylated tau in cultured cells of hippocampus, substantia nigra and locus coeruleus after rotenone exposure. BMC Neurosci 11(1), 144144.
Chitnumsub, P, Fiori, WR, Lashuel, HA, Diaz, H & Kelly, JW (1999). The nucleation of monomeric parallel β-sheet-like structures and their self-assembly in aqueous solution. Bioorg Med Chem 7(1), 39.
Choi, J-S, Braymer, JJ, Nanga, RPR, Ramamoorthy, A & Lim, MH (2010). Design of small molecules that target metal-Aβ species and regulate metal-induced Aβ aggregation and neurotoxicity. Proc Natl Acad Sci USA 107(51), 2199021995.
Du, Q, Dai, B, Hou, J, Hu, J, Zhang, F & Zhang, Y (2015). A comparative study on the self-assembly of an amyloid-like peptide at water-solid interfaces and in bulk solutions. Microsc Res Tech 78(5), 375381.
Du, HN, Li, H-T, Zhang, F, Lin, X-J, Shi, J-H, Shi, Y-H, Ji, L-N, Hu, J, Lin, D-H & Hu, H-Y (2006). Acceleration of α-synuclein aggregation by homologous peptides. FEBS Lett 580(15), 36573664.
Du, HN, Tang, L, Luo, XY, Li, HT, Hu, J, Zhou, JW & Hu, HY (2003). A peptide motif consisting of glycine, alanine, and valine is required for the fibrillization and cytotoxicity of human α-synuclein. Biochemistry 42, 88708878.
Eisenberg, DS & Sawaya, MR (2017). Structural studies of amyloid proteins at the molecular level. Annu Rev Biochem 61(Suppl), 8.
Evangelia, E, Dimitris, E, Themis, P, Georgios, S, Kyriaki, G, Ioannou, CP & Vekrellis, K (2011). Assessment of α-synuclein secretion in mouse and human brain parenchyma. PLoS ONE 6(7), e22225.
Fowler, DM, Koulov, AV, Alory-Jost, C, Marks, MS, Balch, WE & Kelly, JW (2005). Functional amyloid formation within mammalian tissue. PLoS Biol 4(1), e6.
Hansma, P, Elings, V, Marti, O & Bracker, C (1988). Scanning tunneling microscopy and atomic force microscopy: Application to biology and technology. Science 242(4876), 209216.
Hillner, PE, Manne, S, Hansma, PK & Gratz, AJ (1993). Atomic force microscope: A new tool for imaging crystal growth processes. Faraday Discuss 95(95), 191197.
Hou, JH, Du, QQG, Zhong, RB, Zhang, P & Zhang, F (2014). Temperature manipulating peptide self-assembly in water nanofilm. Nucl Sci Tech 25(6), 060502.
Hoyer, W, Cherny, DV & Jovin, TM (2004). Rapid self-assembly of alpha-synuclein observed by in situ atomic force microscopy. J Mol Biol 340(1), 127139.
Kad, NM, Myers, SL, Smith, DP, Smith, DA, Radford, SE & Thomson, NH (2003). Hierarchical assembly of beta(2)-microglobulin amyloid in vitro revealed by atomic force microscopy. J Mol Biol 330(4), 785797.
Kang, SG, Huynh, T, Xia, Z, Zhang, Y, Fang, H, Wei, G & Zhou, R (2013). Hydrophobic interaction drives surface-assisted epitaxial assembly of amyloid-like peptides. J Am Chem Soc 135(8), 31503157.10.1021/ja310989u
Kellermayer, MSZ, Karsai, A, Benke, M, Soos, K & Penke, B (2008). Stepwise dynamics of epitaxially growing single amyloid fibrils. Proc Natl Acad Sci USA 105(1), 141144.
Khurana, R, Coleman, C, Ionescu-Zanetti, C, Carter, SA, Krishna, V, Grover, RK, Roy, R & Singh, S (2005). Mechanism of thioflavin T binding to amyloid fibrils. J Struct Biol 151(3), 229238.
Kowalewski, T & Holtzman, DM (1999). In situ atomic force microscopy study of Alzheimer's beta-amyloid peptide on different substrates: New insights into mechanism of beta-sheet formation. Proc Natl Acad Sci USA 96(7), 36883693.
Kuroda, Y, Maeda, Y, Hanaoka, H, Miyamoto, K & Nakagawa, T (2004). Oligopeptide-mediated acceleration of amyloid fibril formation of amyloidβ(Aβ) and α-synuclein fragment peptide (NAC). J Pept Sci 10(1), 817.
Li, N, Jang, H, Yuan, M, Li, W, Yun, X, Lee, J, Du, Q, Nussinov, R, Hou, J & Lal, R (2017). Graphite-templated amyloid nanostructures formed by a potential pentapeptide inhibitor for Alzheimer's disease: A combined study of real-time atomic force microscopy and molecular dynamics simulations. Langmuir 33, 27.
Lou, S, Wang, X, Yu, Z & Shi, L (2019). Peptide tectonics: Encoded structural complementarity dictates programmable self-assembly. Adv Sci 6(13), 1802043.
Murphy, DD, Rueter, SM, Trojanowski, JQ & Lee, VM-Y (2000). Synucleins are developmentally expressed, and α-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J Neurosci 20(9), 32143220.
Nievergelt, AP, Banterle, N, Andany, SH, Gonczy, P & Fantner, GE (2018). High-speed photothermal off-resonance atomic force microscopy reveals assembly routes of centriolar scaffold protein SAS-6. Nat Nanotechnol 13(8), 696701.
Pantoja-Uceda, D, Santiveri, CM & Jiménez, MA (2006). De novo design of monomeric β-hairpin and β-sheet peptides. Methods Mol Biol 340, 2751.
Shahmoradian, SH, Lewis, AJ, Genoud, C, Hench, J, Moors, TE, Navarro, PP, Castaño-Díez D, Schweighauser, G, Graff-Meyer, A, Goldie, KN, Sütterlin, R, Huisman, E, Ingrassia, A, Gier, Y, Rozemuller, AJM, Wang, J, Paepe, AD, Erny, J, Staempfli, A, Hoernschemeyer, J, Großerüschkamp, F, Niedieker, D, El-Mashtoly, SF, Quadri, M, Van Ijcken, WFJ, Bonifati, V, Gerwert, K, Bohrmann, B, Frank, S, Britschgi, M, Stahlberg, H, Van de Berg, WDJ & Lauer, ME (2019). Lewy pathology in Parkinson's disease consists of crowded organelles and lipid membranes. Nat Neurosci 22(7), 10991109.
Takeuchi, A, Ohtsuki, C, Kamitakahara, M, Ogata, S-i, Miyazaki, T & Tanihara, M (2008). Biomimetic deposition of hydroxyapatite on a synthetic polypeptide with β sheet structure in a solution mimicking body fluid. J Mater Sci Mater Med 19(1), 387393.
Whitehouse, C, Fang, J, Aggeli, A, Bell, M & Boden, N (2010). Adsorption and self-assembly of peptides on mica substrates. Angew Chem Int Ed Engl 44(13), 19651968.
Yang, GC, Woodhouse, KA & Yip, CM (2002). Substrate-facilitated assembly of elastin-like peptides: Studies by variable-temperature in situ atomic force microscopy. J Am Chem Soc 124(36), 1064810649.
Yin, Y, Lu, Y, Gates, B & Xia, Y (2001). Template-assisted self-assembly: A practical route to complex aggregates of monodispersed colloids with well-defined sizes, shapes, and structures. J Am Chem Soc 123(36), 87188729.
Yoo, SI, Yang, M, Subramanian, V, Brender, JR, Sun, K, Joo, NE, Jeong, SH, Ramamoorthy, A & Kotov, NA (2011). Mechanism of fibrillation inhibition of amyloid peptides by inorganic nanoparticles reveal functional similarities with proteins. Angew Chem Int Ed 50(22), 5110.
You, SK, Lim, D, Kim, JY, Kang, SJ, Kim, Y-H & Im, H (2009). β-Sheet-breaking peptides inhibit the fibrillation of human α-synuclein. Biochem Biophys Res Commun 387(4), 682687.
Yun, X, Tang, M, Yang, Z, Wilksch, JJ, Xiu, P, Gao, H, Zhang, F & Wang, H (2017). Interrogation of drug effects on HeLa cells by exploiting new AFM mechanical biomarkers. RSC Adv 7(69), 4376443771.
Zhang, F, Du, HN, Zhang, ZX, Ji, LN, Li, HT, Tang, L, Wang, HB, Fan, CH, Xu, HJ, Zhang, Y, Hu, J, Hu, HY & He, JH (2006). Epitaxial growth of peptide nanofilaments on inorganic surfaces: Effects of interfacial hydrophobicity/hydrophilicity. Angew Chem Int Ed 45(22), 36113613.
Zhang, F, Zhang, P, Hou, J, Yun, X, Li, W, Du, Q & Chen, Y (2015). Large scale anomalous patterns of muscovite mica discovered by atomic force microscopy. ACS Appl Mater Interfaces 7(16), 86998705.10.1021/acsami.5b00984

Keywords

A Comparative Study on the Self-Assembly of Peptide TGV-9 by In Situ Atomic Force Microscopy

  • Yaping Li (a1), Na Li (a2) (a3), Lei Wang (a1), Qinhua Lu (a1), Xiang Ji (a1) and Feng Zhang (a1) (a3) (a4)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.