Skip to main content Accessibility help

Collagen Fibril Ultrastructure in Mice Lacking Discoidin Domain Receptor 1

  • Jeffrey R. Tonniges (a1), Benjamin Albert (a2), Edward P. Calomeni (a3), Shuvro Roy (a4), Joan Lee (a4), Xiaokui Mo (a5), Susan E. Cole (a6) and Gunjan Agarwal (a2) (a4)...


The quantity and quality of collagen fibrils in the extracellular matrix (ECM) have a pivotal role in dictating biological processes. Several collagen-binding proteins (CBPs) are known to modulate collagen deposition and fibril diameter. However, limited studies exist on alterations in the fibril ultrastructure by CBPs. In this study, we elucidate how the collagen receptor, discoidin domain receptor 1 (DDR1) regulates the collagen content and ultrastructure in the adventitia of DDR1 knock-out (KO) mice. DDR1 KO mice exhibit increased collagen deposition as observed using Masson’s trichrome. Collagen ultrastructure was evaluated in situ using transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. Although the mean fibril diameter was not significantly different, DDR1 KO mice had a higher percentage of fibrils with larger diameter compared with their wild-type littermates. No significant differences were observed in the length of D-periods. In addition, collagen fibrils from DDR1 KO mice exhibited a small, but statistically significant, increase in the depth of the fibril D-periods. Consistent with these observations, a reduction in the depth of D-periods was observed in collagen fibrils reconstituted with recombinant DDR1-Fc. Our results elucidate how DDR1 modulates collagen fibril ultrastructure in vivo, which may have important consequences in the functional role(s) of the underlying ECM.


Corresponding author

* Corresponding author.


Hide All
Agarwal, G., Mihai, C. & Iscru, D.F. (2007). Interaction of discoidin domain receptor 1 with collagen type 1. J Mol Biol 367, 443455.
Ahmad, P.J., Trcka, D., Xue, S., Franco, C., Speer, M.Y., Giachelli, C.M. & Bendeck, M.P. (2009). Discoidin domain receptor-1 deficiency attenuates atherosclerotic calcification and smooth muscle cell-mediated mineralization. Am J Pathol 175, 26862696.
Akhtar, S. (2012). Effect of processing methods for transmission electron microscopy on corneal collagen fibrils diameter and spacing. Microsc Res Tech 75, 14201424.
Ameye, L., Aria, D., Jepsen, K., Oldberg, A., Xu, T. & Young, M.F. (2002). Abnormal collagen fibrils in tendons of biglycan/fibromodulin-deficient mice lead to gait impairment, ectopic ossification, and osteoarthritis. FASEB J 16, 673680.
Baselt, D.R., Revel, J.P. & Baldeschwieler, J.D. (1993). Subfibrillar structure of type I collagen observed by atomic force microscopy. Biophys J 65, 26442655.
Bhatnagar, R.S., Qian, J.J. & Gough, C.A. (1997). The role in cell binding of a beta-bend within the triple helical region in collagen alpha 1 (I) chain: Structural and biological evidence for conformational tautomerism on fiber surface. J Biomol Struct Dyn 14, 547560.
Blissett, A.R., Garbellini, D., Calomeni, E.P., Mihai, C., Elton, T.S. & Agarwal, G. (2009). Regulation of collagen fibrillogenesis by cell-surface expression of kinase dead DDR2. J Mol Biol 385, 902911.
Bradshaw, A.D., Baicu, C.F., Rentz, T.J., Van Laer, A.O., Bonnema, D.D. & Zile, M.R. (2010). Age-dependent alterations in fibrillar collagen content and myocardial diastolic function: role of SPARC in post-synthetic procollagen processing. Am J Physiol Heart and Circ Physiol 298, H614H622.
Bradshaw, A.D., Puolakkainen, P., Dasgupta, J., Davidson, J.M., Wight, T.N. & Helene Sage, E. (2003). SPARC-null mice display abnormalities in the dermis characterized by decreased collagen fibril diameter and reduced tensile strength. J Invest Dermatol 120, 949955.
Brondijk, T.H.C., Bihan, D., Farndale, R.W. & Huizinga, E.G. (2012). Implications for collagen I chain registry from the structure of the collagen von Willebrand factor A3 domain complex. Proc Natl Acad Sci U S A 109, 52535258.
Chakravarti, S., Magnuson, T., Lass, J.H., Jepsen, K.J., LaMantia, C. & Carroll, H. (1998). Lumican regulates collagen fibril assembly: skin fragility and corneal opacity in the absence of lumican. J Cell Biol 141, 12771286.
Chakravarti, S., Petroll, W.M., Hassell, J.R., Jester, J.V., Lass, J.H., Paul, J. & Birk, D.E. (2000). Corneal opacity in lumican-null mice: defects in collagen fibril structure and packing in the posterior stroma. Invest Ophthalmol Visual Sci 41, 33653373.
Chen, H., Liu, Y., Slipchenko, M. & Zhao, X. (2011). The layered structure of coronary adventitia under mechanical load. Biophys J 101, 25552562.
Cheng, J. & Stoilov, I. (2013). A fiber-based constitutive model predicts changes in amount and organization of matrix proteins with development and disease in the mouse aorta. Biomech Model Mechanobiol 12, 497510.
Danielson, K.G., Baribault, H., Holmes, D.F., Graham, H., Kadler, K.E. & Iozzo, R.V. (1997). Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J Cell Biol 136, 729743.
Dingemans, K.P., Teeling, P., Lagendijk, J.H. & Becker, A.E. (2000). Extracellular matrix of the human aortic media: An ultrastructural histochemical and immunohistochemical study of the adult aortic media. Anat Rec 258, 114.
Dupuis, L.E., Berger, M.G., Feldman, S., Doucette, L., Fowlkes, V., Chakravarti, S., Thibaudeau, S., Alcala, N.E., Bradshaw, A.D. & Kern, C.B. (2015). Lumican deficiency results in cardiomyocyte hypertrophy with altered collagen assembly. J Mol Cell Cardiol 84, 7080.
Durmowicz, A.G., Parks, W.C., Hyde, D.M., Mecham, R.P. & Stenmark, K.R. (1994). Persistence, re-expression, and induction of pulmonary arterial fibronectin, tropoelastin, and type I procollagen mRNA expression in neonatal hypoxic pulmonary hypertension. Am J Pathol 145, 14111420.
Erickson, B., Fang, M., Wallace, J.M., Orr, B.G., Les, C.M. & Banaszak Holl, M.M. (2013). Nanoscale structure of type I collagen fibrils: Quantitative measurement of D-spacing. Biotechnol J 8, 117126.
Farndale, R.W., Lisman, T., Bihan, D., Hamaia, S., Smerling, C.S., Pugh, N., Konitsiotis, A., Leitinger, B., de Groot, P.G., Jarvis, G.E. & Raynal, N. (2008). Cell-collagen interactions: the use of peptide toolkits to investigate collagen-receptor interactions. Biochem Soc Trans 36, 241250.
Ferri, N., Carragher, N.O. & Raines, E.W. (2004). Role of discoidin domain receptors 1 and 2 in human smooth muscle cell-mediated collagen remodeling: Potential implications in atherosclerosis and lymphangioleiomyomatosis. Am J Pathol 164, 15751585.
Flynn, L.A., Blissett, A.R., Calomeni, E.P. & Agarwal, G. (2010). Inhibition of collagen fibrillogenesis by cells expressing soluble extracellular domains of DDR1 and DDR2. J Mol Biol 395, 533543.
Fomovsky, G., Rouillard, A. & Holmes, J. (2012). Regional mechanics determine collagen fiber structure in healing myocardial infarcts. J Mol Cell Cardiol 52, 10831090.
Franco, C., Ahmad, P.J., Hou, G., Wong, E. & Bendeck, M.P. (2010). Increased cell and matrix accumulation during atherogenesis in mice with vessel wall-specific deletion of discoidin domain receptor 1. Circ Res 106, 17751783.
Franco, C., Britto, K., Wong, E., Hou, G., Zhu, S.-N., Chen, M., Cybulsky, M.I. & Bendeck, M.P. (2009). Discoidin domain receptor 1 on bone marrow-derived cells promotes macrophage accumulation during atherogenesis. Circ Res 105, 11411148.
Franco, C., Hou, G., Ahmad, P.J., Fu, E.Y.K., Koh, L., Vogel, W.F. & Bendeck, M.P. (2008). Discoidin domain receptor 1 (ddr1) deletion decreases atherosclerosis by accelerating matrix accumulation and reducing inflammation in low-density lipoprotein receptor-deficient mice. CircRes 102, 12021211.
Fu, H.-L., Sohail, A., Valiathan, R.R., Wasinski, B.D., Kumarasiri, M., Mahasenan, K.V., Bernardo, M.M., Tokmina-Roszyk, D., Fields, G.B., Mobashery, S. & Fridman, R. (2013). Shedding of discoidin domain receptor 1 by membrane-type matrix metalloproteinases. J Biol Chem 288, 1211412129.
Ghazanfari, S. & Driessen-Mol, A. (2012). A comparative analysis of the collagen architecture in the carotid artery: Second harmonic generation versus diffusion tensor imaging. Biochem Biophys Res Commun 426, 5458.
Giudici, C., Raynal, N., Wiedemann, H., Cabral, W.A., Marini, J.C., Timpl, R., Bächinger, H.P., Farndale, R.W., Sasaki, T. & Tenni, R. (2008). Mapping of SPARC/BM-40/osteonectin-binding sites on fibrillar collagens. J Biol Chem 283, 1955119560.
Gumez, L., Bensamoun, S.F., Doucet, J., Haddad, O., Hawse, J.R., Subramaniam, M., Spelsberg, T.C. & Pichon, C. (2010). Molecular structure of tail tendon fibers in TIEG1 knockout mice using synchrotron diffraction technology. J Appl Physiol 108, 17061710.
Hechler, B., Nonne, C., Eckly, A., Magnenat, S., Rinckel, J.-Y., Denis, C.V., Freund, M., Cazenave, J.-P., Lanza, F. & Gachet, C. (2010). Arterial thrombosis: Relevance of a model with two levels of severity assessed by histologic, ultrastructural and functional characterization. J Thromb Haemost 8, 173184.
Heegaard, A.-M., Corsi, A., Danielsen, C.C., Nielsen, K.L., Jorgensen, H.L., Riminucci, M., Young, M.F. & Bianco, P. (2007). Biglycan deficiency causes spontaneous aortic dissection and rupture in mice. Circulation 115, 27312738.
Herr, A.B. & Farndale, R.W. (2009). Structural insights into the interactions between platelet receptors and fibrillar collagen. J Biol Chem 284, 1978119785.
Horcas, I., Fernández, R., Gómez-Rodríguez, J.M., Colchero, J., Gómez-Herrero, J. & Baro, A.M. (2007). WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78, 013705.
Hou, G., Vogel, W. & Bendeck, M.P. (2001). The discoidin domain receptor tyrosine kinase DDR1 in arterial wound repair. J Clin Invest 107, 727735.
Hulmes, D.J., Jesior, J.C., Miller, A., Berthet-Colominas, C. & Wolff, C. (1981). Electron microscopy shows periodic structure in collagen fibril cross sections. Proc Natl Acad Sci U S A 78, 35673571.
Ishii, T. & Asuwa, N. (1996). Spiraled collagen in the major blood vessels. Mod Pathol 9, 843848.
Jepsen, K.J., Wu, F., Peragallo, J.H., Paul, J., Roberts, L., Ezura, Y., Oldbergi, A., Birk, D.E. & Chakravarti, S. (2002). A syndrome of joint laxity and impaired tendon integrity in lumican- and fibromodulin-deficient mice. J Biol Chem 277, 3553235540.
Kyriakides, T.R., Zhu, Y.H., Smith, L.T., Bain, S.D., Yang, Z., Lin, M.T., Danielson, K.G., Iozzo, R.V., LaMarca, M., McKinney, C.E., Ginns, E.I. & Bornstein, P. (1998). Mice that lack thrombospondin 2 display connective tissue abnormalities that are associated with disordered collagen fibrillogenesis, an increased vascular density, and a bleeding diathesis. J Cell Biol 140, 419430.
Liu, X., Wu, H., Byrne, M., Krane, S. & Jaenisch, R. (1997). Type III collagen is crucial for collagen I fibrillogenesis and for normal cardiovascular development. Proc Natl Acad Sci USA 94, 18521856.
Manabe, I., Shindo, T. & Nagai, R. (2002). Gene expression in fibroblasts and fibrosis: involvement in cardiac hypertrophy. Circ Res 91, 11031113.
Norris, R.A., Damon, B., Mironov, V., Kasyanov, V., Ramamurthi, A., Moreno-Rodriguez, R., Trusk, T., Potts, J.D., Goodwin, R.L., Davis, J., Hoffman, S., Wen, X., Sugi, Y., Kern, C.B., Mjaatvedt, C.H., Turner, D.K., Oka, T., Conway, S.J., Molkentin, J.D., Forgacs, G. & Markwald, R.R. (2007). Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues. J Cell Biochem 101, 695711.
Orgel, J.P.R.O., Irving, T.C., Miller, A. & Wess, T.J. (2006). Microfibrillar structure of type I collagen in situ. Proc Natl Acad Sci U S A 103, 90019005.
Orgel, J.P.R.O., San Antonio, J.D. & Antipova, O. (2011). Molecular and structural mapping of collagen fibril interactions. Connect Tissue Res 52, 217.
Rentz, T.J., Poobalarahi, F., Bornstein, P., Sage, E.H. & Bradshaw, A.D. (2007). SPARC regulates processing of procollagen I and collagen fibrillogenesis in dermal fibroblasts. J Biol Chem 282, 2206222071.
Roig, B., Franco-Pons, N., Martorell, L., Tomàs, J., Vogel, W.F. & Vilella, E. (2010). Expression of the tyrosine kinase discoidin domain receptor 1 (DDR1) in human central nervous system myelin. Brain Res 1336, 2229.
Shirani, J., Pick, R., Roberts, W.C. & Maron, B.J. (2000). Morphology and significance of the left ventricular collagen network in young patients with hypertrophic cardiomyopathy and sudden cardiac death. J Am Coll Cardiol 35, 3644.
Shrivastava, A., Radziejewski, C., Campbell, E., Kovac, L., McGlynn, M., Ryan, T.E., Davis, S., Goldfarb, M.P., Glass, D.J., Lemke, G. & Yancopoulos, G.D. (1997). An orphan receptor tyrosine kinase family whose members serve as nonintegrin collagen receptors. Mol Cell 1, 2534.
Sivakumar, L. & Agarwal, G. (2010). The influence of discoidin domain receptor 2 on the persistence length of collagen type I fibers. Biomaterials 31, 48024808.
Slack, B.E., Siniaia, M.S. & Blusztajn, J.K. (2006). Collagen type I selectively activates ectodomain shedding of the discoidin domain receptor 1: involvement of Src tyrosine kinase. J Cell Biochem 98, 672684.
Slatter, D.A. & Farndale, R.W. (2015). Structural constraints on the evolution of the collagen fibril: Convergence on a 1014-residue COL domain. Open Biol 5, 140220.
Sugita, S. & Matsumoto, T. (2013). Heterogeneity of deformation of aortic wall at the microscopic level: Contribution of heterogeneous distribution of collagen fibers in the wall. Biomed Mater Eng 23, 447461.
Svensson, L., Aszódi, A., Reinholt, F.P., Fässler, R., Heinegård, D. & Oldberg, A. (1999). Fibromodulin-null mice have abnormal collagen fibrils, tissue organization, and altered lumican deposition in tendon. J Biol Chem 274, 96369647.
Sweeney, S.M., Orgel, J.P., Fertala, A., McAuliffe, J.D., Turner, K.R., Di Lullo, G.A., Chen, S., Antipova, O., Perumal, S., Ala-Kokko, L., Forlino, A., Cabral, W.A., Barnes, A.M., Marini, J.C. & San Antonio, J.D. (2008). Candidate cell and matrix interaction domains on the collagen fibril, the predominant protein of vertebrates. J Biol Chem 283, 2118721197.
Vogel, W., Gish, G.D., Alves, F. & Pawson, T. (1997). The discoidin domain receptor tyrosine kinases are activated by collagen. Mol Cell 1, 1323.
Vogel, W.F. (2002). Ligand-induced shedding of discoidin domain receptor 1. FEBS Lett 514, 175180.
Vogel, W.F., Aszódi, A., Alves, F. & Pawson, T. (2001). Discoidin domain receptor 1 tyrosine kinase has an essential role in mammary gland development. Mol Cell Biol 21, 29062917.
Wallace, J.M., Orr, B.G., Marini, J.C. & Holl, M.M.B. (2011). Nanoscale morphology of type I collagen is altered in the Brtl mouse model of Osteogenesis Imperfecta. J Struct Biol 173, 146152.
Williams, D.R., Shifley, E.T., Lather, J.D. & Cole, S.E. (2014). Posterior skeletal development and the segmentation clock period are sensitive to Lfng dosage during somitogenesis. Dev Biol 388, 159169.
Xu, H., Raynal, N., Stathopoulos, S., Myllyharju, J., Farndale, R.W. & Leitinger, B. (2011). Collagen binding specificity of the discoidin domain receptors: Binding sites on collagens II and III and molecular determinants for collagen IV recognition by DDR1. Matrix Biol 30, 1626.
Yamamoto, S., Hitomi, J., Sawaguchi, S., Abe, H., Shigeno, M. & Ushiki, T. (2002). Observation of human corneal and scleral collagen fibrils by atomic force microscopy. Jpn J Ophthalmol 46, 496501.
Yamamoto, S., Hitomi, J., Shigeno, M., Sawaguchi, S., Abe, H. & Ushiki, T. (1997). Atomic force microscopic studies of isolated collagen fibrils of the bovine cornea and sclera. Arch Histol Cytol 60, 371378.


Type Description Title
Supplementary materials

Tonniges Supplementary Material

 Unknown (6.2 MB)
6.2 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed