Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-13T20:28:01.937Z Has data issue: false hasContentIssue false

Chemical Vapor Deposition of Porous GaN Particles on Silicon

Published online by Cambridge University Press:  26 July 2012

Joan J. Carvajal*
Affiliation:
Física i Cristallografia de Materials i Nanomaterials (FiCMA-FiCNA), Universitat Rovira i Virgili, Campus Sescelades, c/Marcel·lí Domingo s/n, 43007 Tarragona, Spain Department of Electrical and Computer Engineering, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
Oleksandr V. Bilousov
Affiliation:
Física i Cristallografia de Materials i Nanomaterials (FiCMA-FiCNA), Universitat Rovira i Virgili, Campus Sescelades, c/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
Dominique Drouin
Affiliation:
Department of Electrical and Computer Engineering, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
Magdalena Aguiló
Affiliation:
Física i Cristallografia de Materials i Nanomaterials (FiCMA-FiCNA), Universitat Rovira i Virgili, Campus Sescelades, c/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
Francesc Díaz
Affiliation:
Física i Cristallografia de Materials i Nanomaterials (FiCMA-FiCNA), Universitat Rovira i Virgili, Campus Sescelades, c/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
J. Carlos Rojo
Affiliation:
Department of Materials Science and Engineering, State University of New York, Stony Brook, NY 11794, USA
*
Corresponding author. E-mail: joanjosep.carvajal@urv.cat
Get access

Abstract

We present a technique for the direct deposition of nanoporous GaN particles on Si substrates without requiring any post-growth treatment. The internal morphology of the nanoporous GaN particles deposited on Si substrates by using a simple chemical vapor deposition approach was investigated, and straight nanopores with diameters ranging between 50 and 100 nm were observed. Cathodoluminescence characterization revealed a sharp and well-defined near band-edge emission at ∼365 nm. This approach simplifies other methods used for this purpose, such as etching and corrosion techniques that can damage the semiconductor structure and modify its properties.

Type
Research Article
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Currently at GE Global Research, Niskayuna, NY 12309, USA

References

REFERENCES

Aoki, M., Yamane, H., Shimada, M., Sekiguchi, T., Hanada, T., Yao, T., Sarayama, S. & Di Salvo, F.J. (2000). Growth of GaN single crystals from a Na-Ga melt at 750°C and 5Mpa of N2 . J Crystal Growth 218, 712.CrossRefGoogle Scholar
Bressets, P.M.M.C., Knappen, J.W.J., Meulenkamp, E.A. & Kelly, J.J. (1992). Visible light emission from a porous silicon/solution diode. Appl Phys Lett 61, 108110.CrossRefGoogle Scholar
Carvajal, J.J. & Rojo, J.C. (2009). Morphology control in as-grown GaN nanoporous particles. Crystal Growth Design 9, 320326.CrossRefGoogle Scholar
Chaplais, G. & Kaskel, S. (2004). Porosity control in pre-ceramic molecular precursor-derived GaN based materials. J Mater Chem 14, 10171025.CrossRefGoogle Scholar
Chaplais, G., Schlichte, K., Stark, O., Fischer, R.A. & Kaskel, S. (2003). Template assisted design of microporous gallium nitride materials. Chem Commun 730731.CrossRefGoogle ScholarPubMed
Chen, C.C., Yeh, C.C., Chen, C.H., Yu, M.Y., Li, H.L., Wu, J.J., Chen, K.H., Chen, L.C., Peng, J.Y. & Chen, Y.F. (2001). Catalytic growth and characterization of gallium nitride nanowires. J Am Chem Soc 123, 27912798.CrossRefGoogle ScholarPubMed
Cherns, D., Henley, S.J. & Ponce, F.A. (2001). Edge and screw dislocations as nonradiative centers in InGaN/GaN quantum well luminescence. Appl Phys Lett 78, 26912693.CrossRefGoogle Scholar
Diaz, D.J., Williamson, T.L., Adesida, I., Bohn, P.W. & Molnar, R.J. (2002). Morphology and luminescence of porous GaN generated via Pt-assisted electroless etching. J Vac Sci Technol B 20, 23752383.CrossRefGoogle Scholar
Diaz, D.J., Williamson, T.L., Adesida, I., Bohn, P.W. & Molnar, R.J. (2003). Morphology evolution and luminescence properties of porous GaN generated via Pt-assisted electroless etching of hydride vapor phaser epitaxy GaN on sapphire. J Appl Phys 94, 75267534.CrossRefGoogle Scholar
Föll, H., Carstensen, J. & Frey, S. (2006). Porous and nanoporous semiconductors and emerging applications. J Nanomater 2006(1), 91635-1–10.CrossRefGoogle Scholar
Ghosh, B.K., Tanikawa, T., Hashimoto, A., Yamamoto, A. & Ito, Y. (2003). Reduced-stress GaN epitaxial layers grown on Si(111) by using a porous GaN interlayer converted from GaAs. J Crystal Growth 249, 422428.CrossRefGoogle Scholar
Kucheyev, S.O., Williams, J.S., Jagadish, C., Zou, J., Craig, V.S.J. & Li, G. (2000). Ion-beam-induced porosity of GaN. Appl Phys Lett 77, 14551457.CrossRefGoogle Scholar
Li, X., Kim, Y.W., Bohn, P.W. & Adesida, I. (2002). In-plane bandgap control in porous GaN through electroless wet chemical etching. Appl Phys Lett 80, 980982.CrossRefGoogle Scholar
Miyajima, T., Hino, T., Tomiya, S., Yanashima, K., Nakajima, H., Araki, T., Nanishi, Y., Satake, A., Masumato, Y., Akimoto, K., Kobayashi, T. & Ikeda, M. (2001). Threading dislocations and optical properties of GaN and GaInN. Phys Status Solidi B 228, 395402.3.0.CO;2-2>CrossRefGoogle Scholar
Mynbaeva, M., Bazhenov, N., Evstropov, K.M., Saddow, S.E., Koshka, Y. & Melnik, Y. (2001). Photoconductivity in porous GaN layers. Phys Stat Sol B 228, 589592.3.0.CO;2-J>CrossRefGoogle Scholar
Mynbaeva, M., Titkov, A., Kryzhanovski, A., Ratnikov, V.V., Mynbaev, K., Huhtinen, H., Laiho, R. & Dmitriev, V.A. (2000). Structural characterization and strain relaxation in porous GaN layers. Appl Phys Lett 84, 11131115.CrossRefGoogle Scholar
Mynbaeva, M., Titkov, A., Kryzhanovski, A., Kotousova, I., Zubrilov, A.S., Ratnikov, V.V., Davidov, V.Y., Kuznetsov, N.I., Mynbaev, K., Tsvetkov, D.V., Stepanov, S., Cherenkov, A. & Dmitriev, D.A. (1999). Strain relaxation in GaN layers grown on porous GaN sublayers. MRS Internet J Nitride Semicond Res 4, 14(1-5). CrossRefGoogle Scholar
Pakes, A., Skeldon, P., Thompson, G.E., Fraser, J.W., Moisa, S., Sproule, G.I., Graham, M.J. & Newcomb, S.B. (2003). Anodic oxidation of gallium nitride. J Mater Sci 38, 343349.CrossRefGoogle Scholar
Ponce, F.A., Bour, D.P., Götz, W. & Wright, P.J. (1996). Spatial distribution of the luminescence in GaN thin films. Appl Phys Lett 68, 5759.CrossRefGoogle Scholar
Qhalid Fareed, R.S., Adivarahan, V., Chen, C.Q., Rai, S., Kuokstis, E., Yang, J.W., Khan, M.A., Caissie, J. & Molnar, R.J. (2004). Air-bridged lateral growth of crack-free Al0.24Ga0.76N on highly relaxed porous GaN. Appl Phys Lett 84, 696698.CrossRefGoogle Scholar
Stöger, M., Breymesser, A., Schlosser, V., Ramadori, M., Plunger, V., Peiró, D., Voz, C., Bertomeu, J., Nelhiebel, M., Schattschneider, P. & Andreu, J. (1999). Investigation of defect formation and electronic transport in microcrystalline silicon deposited by hot-wire CVD. Physica B 273274, 540543.CrossRefGoogle Scholar
Wang, Y.D., Chua, S.J., Sander, M.S., Chen, P., Tripathy, S. & Fonstad, C.G. (2004). Fabrication and properties of nanoporous GaN films. Appl Phys Lett 85, 816818.CrossRefGoogle Scholar
Wohlfart, A., Devi, A., Hipler, F., Becker, H.W. & Fischer, R.A. (2001). Growth of porous columnar alpha-GaN layers on c-plane Al2O3 by MOCVD using bisazido dimethylaminopropyl gallium as single source precursor. J Phys IV 11, 683687.Google Scholar
Yamane, H., Shimada, M., Sekiguchi, T. & Di Salvo, F.J. (1998). Morphology and characterization of GaN single crystals grown in a Na flux. J Crystal Growth 186, 812.CrossRefGoogle Scholar
Yano, M., Okamoto, M., Yap, Y.K., Yoshimura, M., Mori, Y. & Sasaki, T. (1999). Control of nucleation site and growth orientation of bulk GaN crystals. Jpn J Appl Phys 38, L1121L1123.CrossRefGoogle Scholar
Yin, L.W., Bando, Y., Golberg, D., Gloter, A., Li, M.S., Yuan, X. & Sekiguchi, T. (2005). Porous BCN nanotubular fibers: Growth and spatially resolved cathodoluminescence. J Am Chem Soc 127, 1635416355.CrossRefGoogle ScholarPubMed
Zangooie, S., Woollam, J.A. & Arwin, H. (2000). Self-organization in porous 6H-SiC. J Mater Res 15, 18601863.CrossRefGoogle Scholar