Skip to main content Accessibility help
×
Home

Characterization of SiGe Films for Use as a National Institute of Standards and Technology Microanalysis Reference Material (RM 8905)

  • Ryna B. Marinenko (a1), Shirley Turner (a1), David S. Simons (a1), Savelas A. Rabb (a2), Rolf L. Zeisler (a2), Lee L. Yu (a2), Dale E. Newbury (a1), Rick L. Paul (a2), Nicholas W.M. Ritchie (a1), Stefan D. Leigh (a3), Michael R. Winchester (a2), Lee J. Richter (a1), Douglas C. Meier (a1), Keana C.K. Scott (a1), Donna Klinedinst (a1) and John A. Small (a1)...

Abstract

Bulk silicon-germanium (SiGe) alloys and two SiGe thick films (4 and 5 μm) on Si wafers were tested with the electron probe microanalyzer (EPMA) using wavelength dispersive spectrometers (WDS) for heterogeneity and composition for use as reference materials needed by the microelectronics industry. One alloy with a nominal composition of Si0.86Ge0.14 and the two thick films with nominal compositions of Si0.90Ge0.10 and Si0.75Ge0.25 on Si, evaluated for micro- and macroheterogeneity, will make good microanalysis reference materials with an overall expanded heterogeneity uncertainty of 1.1% relative or less for Ge. The bulk Ge composition in the Si0.86Ge0.14 alloy was determined to be 30.228% mass fraction Ge with an expanded uncertainty of the mean of 0.195% mass fraction. The thick films were quantified with WDS-EPMA using both the Si0.86Ge0.14 alloy and element wafers as reference materials. The Ge concentration was determined to be 22.80% mass fraction with an expanded uncertainty of the mean of 0.12% mass fraction for the Si0.90Ge0.10 wafer and 43.66% mass fraction for the Si0.75Ge0.25 wafer with an expanded uncertainty of the mean of 0.25% mass fraction. The two thick SiGe films will be issued as National Institute of Standards and Technology Reference Materials (RM 8905).

Copyright

Corresponding author

Corresponding author. E-mail: ryna.marinenko@nist.gov

References

Hide All
Armstrong, J.T. (1991). Quantitative elemental analysis of individual microparticles with electron beam instruments. In Electron Probe Quantitation, Heinrich, K.F.J. and Newbury, D.E. (Eds.), pp. 261313. New York: Plenum Press.
Armstrong, J.T. (1995). CITZAF: A package of correction programs for the quantitative electron microbeam X-ray analysis of thick polished materials, thin films, and particles. Microbeam Anal 4, 177200.
Bence, A.E. & Albee, A.L. (1968). Empirical correction factors for the electron microanalysis of silicates and oxides. J Geol 76, 382403.
Berger, M.J., Hubbell, J.H., Seltzer, S.M., Chang, J., Coursey, J.S., Sukumar, R. & Zucker, D.S. (2005). XCOM: Photon cross section database (version 1.3). Available at http://physics.nist.gov/xcom. Gaithersburg, MD: National Institute of Standards and Technology.
Carpenter, P. & Cobb, S.D. (2001). Application of alpha-factor and Monte-Carlo methods to epma in the system Ge-Si. Microsc Microanal 7(S2), 682683.
Chantler, C.T., Olsen, K., Dragoset, R.A., Chang, J., Kishore, A.R., Kotochigova, S.A. & Zucker, D.S. (2005). X-ray form factor, attenuation and scattering tables (version 2.1). Gaithersburg, MD: National Institute of Standards and Technology. Available at http://physics.nist.gov/ffast.
Donovan, J. (2005). Probe Software, Inc. Web site at http://www.probesoftware.com.
Fiori, C.E. & Swyt-Thomas, C.R. (1991). U.S. Patent number 5,299,138, accepted 1994. Desk top spectrum analyzer. Free version available at http://www.cstl.nist.gov/div837/Division/outputs/software.htm.
Heinrich, K.F.J. (1966). Mass absorption coefficients for electron probe microanalysis. In The Electron Microprobe, McKinley, T.D, Heinrich, K.F.J. & Wittry, D.B. (Eds.), pp. 296366. New York: Wiley & Sons.
Heinrich, K.F.J. (1986). Mass absorption coefficients for electron probe microanalysis. In Proceedings of the 11th International Congress on X-ray Optics and Microanalysis, London, Canada, August 1986, Brown, J.D. & Packwood, R.H. (Eds.), pp. 67119. London, Ontario, Canada: University of Western Ontario.
Henke, B.L. & Ebisu, E.S. (1974). Low energy X-ray and electron absorption within solids (100–1500 eV region). In Advances in X-Ray Analysis, Vol. 17, Grant, C.L., Barrett, C.S., Newkirk, J.B. & Ruud, C.O. (Eds.), pp. 150213. New York: Plenum Press.
Henke, B.L., Lee, P., Tanaka, T.J., Shimabukuro, R.I. & Fujikawa, B.K. (1982). Low energy X-ray interaction coefficients: Photoabsorption, scattering and reflection. Atomic Data and Nuclear Data Tables 27, 1144.
Hovington, P., Drouin, D. & Gauvin, R. (1997). CASINO: A new Monte Carlo code in C language for electron beam interaction. Part I: Description of the program. Scanning 19, 114.
Humlicek, J., Garriga, M., Alonso, M.I. & Cardona, M. (1989). Optical spectra of SiXGe1-X alloys. J Appl Phys 65(7), 28272832.
ISO (1995). Guide to the expression of uncertainty in measurement. Guide 98, Geneva, Switzerland: International Organization for Standardization.
ISO (2003). Microbeam analysis—Electron probe microanalysis—Guidelines for the specification of certified reference materials (CRMs). International Standard 14595.Geneva, Switzerland: International Organization for Standardization.
Levenson, M.S., Banks, D.L., Eberhardt, K.R., Gill, L.M., Guthrie, W.F., Liu, H.K., Vangel, M.G., Yen, J.H. & Zhang, N.F. (2000). An approach to combining results from multiple methods motivated by the ISO GUM. J Res Natl Inst Stand Technol 105, 571579.
Lindstrom, R.M., Zeisler, R. & Greenberg, R.R. (2007). Accuracy and uncertainty in radioactivity measurement for NAA. J Radioanal Nucl Chem 271, 311315.
Marinenko, R. & Leigh, S. (2004). Heterogeneity evaluation of research materials for microanalysis standards certification. Micros Microanal 10, 491506.
Marinenko, R.B., Armstrong, J.T., Turner, S., Steel, E.B. & Stevie, F.A. (2003). Characterization of SiGe bulk compositional standards with electron probe microanalysis. In Characterization and Metrology for ULSI Technology: 2003 International Conference on Characterization and Metrology for ULSI Technology, Seiler, D.G., Diebold, A.C., Shaffner, T.J., McDonald, R., Zollner, S., Rajinder, P.K. & Secula, E.M. (Eds.), pp. 238242. New York: American Institute of Physics.
McMaster, W.H., Del Grande, N.K., Mallet, J.H. & Hubbell, J.H. (1969). Compilation of X-ray cross sections. Report UCRL-50174, Lawrence Livermore Laboratory.
Newbury, D.E. & Myklebust, R.L. (1995). NIST micro MC: A user's guide to the NIST microanalysis Monte Carlo electron trajectory simulation program. Microbeam Anal 4, 165175.
Paul, R.L., Lindstrom, R.M. & Heald, A.E. (1997). Cold neutron prompt gamma-ray activation analysis at NIST—Recent development. J Radioanal Nucl Chem 215(1), 6368.
Pouchou, J.L. & Pichoir, F. (1988). A simplified version of the “PAP” model for matrix corrections in EPMA. In Microbeam Analysis—1988, Proceedings of the 23rd Annual Meeting of the Microbeam Analysis Society, Milwaukee, WI, Newbury, D.E. (Ed.), pp. 315318. San Francisco, CA: San Francisco Press.
Pouchou, J.L. & Pichoir, F. (1991). Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. In Electron Probe Quantitation, Heinrich, K.F.J. & Newbury, D.E. (Eds.), pp. 3176. New York: Plenum Press.
Rabb, S.A., Winchester, M.R. & Yu, L.L. (2008). Accurate determinations of Ge atom fractions in SiGe semiconductor chips using high performance ICP-OES. J Anal At Spectrom 23, 550554.
Ritchie, N.W.M. (2005). A new Monte Carlo application for complex sample geometries. Surf Interface Anal 37, 10061011.
Salit, M.L. (2005). Traceability of single-element calibration solutions. Anal Chem 77, 136A141A.
Salit, M.L., Turk, G.C., Lindstrom, A.P., Butler, T.A., Beck, C.M. II & Norman, B. (2001). Single-element solution comparisons with a high-performance inductively coupled plasma optical emission spectrometric method. Anal Chem 73, 48214829.
Salit, M.L., Vocke, R.D. & Kelly, W.R. (2000). An ICP-OES method with 0.2% expanded uncertainties for the characterization of LiAlO2. Anal Chem 72, 35043511.
Scott, V.D. & Love, G. (1983). Quantitative Electron-Probe Microanalysis. New York: Wiley & Sons.
Scott, V.D. & Love, G. (1991). An EPMA correction method based upon a quadrilateral ϕ(ρz) profile. In Electron Probe Quantitation, Heinrich, K.F.J. & Newbury, D.E. (Eds.), pp. 1930. New York: Plenum Press.
Subbanna, S., Meyerson, B., O'Connell, T. & St. Onge, S. (2001). Silicon-germanium economic drivers, technology, and volume production issues. Future Fab Intl 11, sect. 1. Available at http://www.future-fab.com/documents.asp?d_id=620&login=tried.
Taylor, B.N. & Kuyatt, C.E. (1994). Guidelines for Evaluating and Expressing Uncertainty in NIST Measurement Results. NIST Technical Note 1297. Gaithersburg, MD: National Institute of Standards and Technology.
Zeisler, R. (2000). Maintaining accuracy in gamma-ray spectrometry at high count rates. J Radioanal Nucl Chem 244, 507510.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed