Skip to main content Accessibility help

Characterization of Functionalized Multiwalled Carbon Nanotubes for Use in an Enzymatic Sensor

  • Leonor Guadarrama-Fernández (a1), Jorge Chanona-Pérez (a1), Arturo Manzo-Robledo (a2), Georgina Calderón-Domínguez (a1), Adrián Martínez-Rivas (a3), Jaime Ortiz-López (a4) and Jorge Roberto Vargas-García (a5)...


Carbon nanotubes (CNT) have proven to be materials with great potential for the construction of biosensors. Development of fast, simple, and low cost biosensors to follow reactions in bioprocesses, or to detect food contaminants such as toxins, chemical compounds, and microorganisms, is presently an important research topic. This report includes microscopy and spectroscopy to characterize raw and chemically modified multiwall carbon nanotubes (MWCNTs) synthesized by chemical vapor deposition with the intention of using them as the active transducer in bioprocessing sensors. MWCNT were simultaneously purified and functionalized by an acid mixture involving HNO3–H2SO4 and amyloglucosidase attached onto the chemically modified MWCNT surface. A 49.0% decrease in its enzymatic activity was observed. Raw, purified, and enzyme-modified MWCNTs were analyzed by scanning and transmission electron microscopy and Raman and X-ray photoelectron spectroscopy. These studies confirmed purification and functionalization of the CNTs. Finally, cyclic voltammetry electrochemistry was used for electrical characterization of CNTs, which showed promising results that can be useful for construction of electrochemical biosensors applied to biological areas.


Corresponding author

*Corresponding author.


Hide All
Arepalli, S., Nikolaev, P., Gorelik, O., Hadjiev, V., Holmes, W., Files, B. & Yowell, L. (2004). Protocol for the characterization of single-wall carbon nanotube material quality. Carbon 42, 17831791.
Ashly, P.C. & Mohanan, P.V. (2010). Preparation and characterization of Rhizopus amyloglucosidase immobilized on poly(o-toluidine). Process Biochem 45(8), 14221426.
Bahr, J.L., Mickelson, E.T., Bronikowski, M.J., Smalley, R.E. & Tour, J.M. (2001). Dissolution of small diameter single-wall carbon nanotubes in organic solvents? Chem Commun, 193194.
Baitinger, E.M., Vekesser, N.A., Kovalev, I.N., Sinitsyn, A.A., Tsygankov, I.A., Ryabkov, Y.I. & Viktorova, V.V. (2011). Structure of multiwalled carbon nanotubes grown by chemical vapor deposition. Inorg Mater 47, 251254.
Baker, S.E., Cai, W., Lasseter, T.L., Weidkamp, K.P. & Hamers, R.J. (2002). Covalently bonded adducts of deoxyribonucleic acid (DNA) oligonucleotides with single-wall carbon nanotubes: Synthesis and hybridization. Nano Lett 2, 14131417.
Balavoine, F., Schultz, P., Richard, C., Mallouh, V., Ebbesen, T.W. & Mioskowski, C. (1999). Helical crystallization of proteins on carbon nanotubes: A first step towards the development of new biosensors. Angew Chem Int Ed 38, 19121915.
Belin, T. & Epron, F. (2005). Characterization methods of carbon nanotubes: A review. J Mater Sci Eng B 119, 105118.
Cang-Rong, J.T. & Pastorin, G. (2009). The influence of carbon nanotubes on enzyme activity and structure: Investigation of different immobilization procedures through enzyme kinetics and circular dichroism studies. Nanotechnol 20(25), 255102.
Chen, X.L., Li, W.S., Tan, C.L., Li, W. & Wi, Y.Z. (2008). Improvement in electrochemical capacitance of carbon materials by nitric acid treatment. J Power Sources 184, 668674.
Crespo, G.A., Gugsa, D., Macho, S. & Rius, F.X. (2009). Solid contact pH-selective electrode using multi-walled carbon nanotubes. Anal Bioanal Electrochem 395, 23712376.
Dresselhaus, M.S., Jorio, A., Hofmann, M., Dresselhaus, G. & Saito, R. (2010). Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett 10, 751758.
Feng, W. & Ji, P. (2011). Enzymes immobilized on carbon nanotubes. Biotechnol Adv 29(6), 889895.
Gao, Y.K., Traeger, F., Shekhah, O., Idriss, H. & Wöll, C. (2009). Probing the interaction of the amino acid alanine with the surface of ZnO (1010). J Colloid Interface Sci 338, 1621.
Gervais, M., Douy, A. & Gallot, B. (1988). X-ray photoelectron spectroscopy of ABA polypeptide-polybutadiene-polypeptide triblock. Polymer 29, 17791783.
Kalbac, M., Hsieh, Y.P., Farhat, H., Kavan, L., Hofmann, M., Kong, J. & Dresselhaus, M.S. (2010). Defects in individual semiconducting single wall carbon nanotubes: Raman spectroscopic and in situ Raman spectroelectrochemical study. Nano Lett 10, 46194626.
Kang, S.Z., Yin, D., Li, X. & Mu, J. (2011). A facile preparation of multiwalled carbon nanotubes modified with hydroxyl groups and their high dispersibility in ethanol. Colloids Surf A 384, 363367.
Kim, Y., Cho, J., Ansari, S.G., Kim, H., Dar, M.A., Seo, H., Kim, G., Lee, D., Khang, G. & Shin, H. (2006). Immobilization of avidin on the functionalized carbon nanotubes. Synth. Met. 156, 938943.
Kumar, F.S., Koinkarc, P.M., Avasthib, D.K., Pivind, J.C. & More, M.A. (2009). Effect of intense laser and energetic ion irradiation on Raman modes of multiwalled carbon nanotubes. Thin Solid Films 517, 43224324.
Li-xiang, L. & Feng, L. (2011). The effect of carbonyl, carboxyl and hydroxyl groups on the capacitance of carbon nanotubes. New Carbon Mater 26, 224228.
Lowry, O.H., Rosebrough, N.J., Farr, L. & Randall, R.J. (1951). Protein measurement with the folin phenol reagent. J Biol Chem 193, 265275.
Peng, Y., Rong-Bing, W. & Xin-Ping, W. (2009). Quantitative enzyme immobilization: Control of the carboxyl group density on support surface. J Mol Catal B: Enzym 61, 296302.
Porro, S., Musso, S., Vinante, M., Vanzetti, L., Anderle, M., Trotta, F. & Tagliaferro, A. (2007). Purification of carbon nanotubes grown by thermal CVD. Physica E 37, 5861.
Ramadas, M., Hoist, O. & Mattiasson, B. (1996). Production of amyloglucosidase by Aspergillus niger under different cultivation regimens. World J Microbiol Biotechnol 12, 267271.
Sassolas, A., Blum, L.J. & Leca-Bouvier, B.D. (2012). Immobilization strategies to develop enzymatic biosensors. Biotechnol Adv 30(3), 489511.
Shim, M., Kam, N.W.S., Chen, R.J., Li, Y. & Dai, H. (2002). Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett 2, 285288.
Talbert, J.N. & Goddard, J.M. (2012). Enzymes on material surfaces. Colloids Surf B Biointerfaces 93, 819.
Tasis, D., Tagmatarchis, N., Bianco, A. & Prato, M. (2006). Chemistry of carbon nanotubes. Chem Rev 106, 11051136.
Trojanowicz, M. (2006). Analytical applications of carbon nanotubes: A review. TrAC Trends Anal Chem 25, 480489.
Vashist, S.K., Zheng, D., Al-Rubeaan, K., Luong, J.H. & Sheu, F.S. (2011). Advances in carbon nanotube based electrochemical sensors for bioanalytical applications. Biotechnol Adv 29, 169188.
Warriner, K. & Namvar, A. (2011). 4.54—Biosensors for foodborne pathogen detection. In Comprehensive Biotechnology, Moo-Young, M. (Ed.), pp. 659674. Burlington, MA: Academic Press.
Yu, C.M., Yen, M.J. & Chen, L.C. (2010). A bioanode based on MWCNT/protein-assisted co- immobilization of glucose oxidase and 2,5-dihydroxybenzaldehyde for glucose fuel cells. Biosens Bioelectron 25, 25152521.
Zhou, H., Yuanyuan, Q., Chunlei, K., Duanxing, L.i., Shen, E., Qiao, M., Xuwang, Z., Jingwei, W. & Jiti, Z. (2014). Catalytic performance and molecular dynamic simulation of immobilized CC bond hydrolase based on carbon nanotube matrix. Colloids Surf B Biointerfaces 116, 365371.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed