Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-23T19:55:15.128Z Has data issue: false hasContentIssue false

Cellular Uptake Mechanisms of an Antitumor Ruthenium Compound: The Endosomal/Lysosomal System as a Target for Anticancer Metal-Based Drugs

Published online by Cambridge University Press:  24 June 2013

Leonor Côrte-Real
Affiliation:
Unidade de Ciências Químicas e Radiofarmacêuticas, Instituto Superior Técnico, Polo de Loures-Campus Tecnológico e Nuclear, Estrada Nacional 10, 2686-953 Sacavém, Portugal Centro de Ciências Moleculares e Materiais, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
António P. Matos
Affiliation:
Departamento de Anatomia Patológica Curry Cabral, Centro Hospitalar de Lisboa Central, Rua da Beneficência, 8, 1069-166 Lisboa, Portugal and CESAM, Faculdade de Ciências da Universidade de Lisboa, Portugal
Irina Alho
Affiliation:
Laboratório de Genética, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, Edifício Egas Moniz, 1649-028 Lisboa, Portugal
Tânia S. Morais
Affiliation:
Centro de Ciências Moleculares e Materiais, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
Ana Isabel Tomaz
Affiliation:
Centro de Ciências Moleculares e Materiais, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
Maria Helena Garcia
Affiliation:
Centro de Ciências Moleculares e Materiais, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
Isabel Santos
Affiliation:
Unidade de Ciências Químicas e Radiofarmacêuticas, Instituto Superior Técnico, Polo de Loures-Campus Tecnológico e Nuclear, Estrada Nacional 10, 2686-953 Sacavém, Portugal
Manuel P. Bicho
Affiliation:
Laboratório de Genética, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, Edifício Egas Moniz, 1649-028 Lisboa, Portugal
Fernanda Marques*
Affiliation:
Unidade de Ciências Químicas e Radiofarmacêuticas, Instituto Superior Técnico, Polo de Loures-Campus Tecnológico e Nuclear, Estrada Nacional 10, 2686-953 Sacavém, Portugal
*
*Corresponding author. E-mail: fmarujo@ctn.ist.utl.pt
Get access

Abstract

Previous studies have described promising antitumor activity of an organometallic Ru(II) complex, η5-Cyclopentadienyl(2,2′-bipyridyl)(triphenylphosphane) Ruthenium(II) triflate ([(η5-C5H5)Ru(2,2′-bipyridyl)(PPh3)][CF3SO3]) herein designated as TM34. Its broad spectrum of activity against a panel of human tumor cell lines and high antiproliferative efficiency prompted us to focus on its mode of action. We present herein results obtained with two human tumor cell lines A2780 and MDAMB231 on the compound distribution within the cell, the mechanism of its activity, and its cellular targets. The prospective metallodrug TM34 revealed: (a) fast antiproliferative effects even at short incubation times for both cell lines; (b) preferential localization at the cell membrane and cytosol; (c) cellular activity by a temperature-dependent process, probably macropinocytosis; (d) inhibition of a lysosomal enzyme, acid phosphatase, in a dose-dependent mode; and (e) disruption and vesiculation of the Golgi apparatus, which suggest the involvement of the endosomal/lysosomal system in its mode of action. These results are essential to elucidate the basis for the cytotoxic activity and mechanism of action of this RuII5-cyclopentadienyl) complex.

Type
Portuguese Society for Microscopy
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bergamo, A., Gaiddon, C., Schellens, J.H., Beijnen, J.H. & Sava, G. (2012). Approaching tumour therapy beyond platinum drugs: Status of the art and perspectives of ruthenium drug candidates. J Inorg Biochem 106, 9099.Google Scholar
Bosch, M.E., Sánchez, A.J., Rojas, F.S. & Ojeda, C.B. (2008). Analytical methodologies for the determination of cisplatin. J Pharm Biomed Anal 47, 451459.Google Scholar
Bull, H., Murray, P.G., Thomas, D., Fraser, A.M. & Nelson, P.N. (2002). Acid phosphatases. Mol Pathol 55, 6572.CrossRefGoogle ScholarPubMed
Česen, M.H., Pegan, K., Spes, A. & Turk, B. (2012). Lysosomal pathways to cell death and their therapeutic applications. Exp Cell Res 318, 12451251.Google Scholar
Crans, D.C., Smee, J.J., Gaidamauskas, E. & Yang, L. (2004). The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem Rev 104, 849902.CrossRefGoogle ScholarPubMed
de Duve, C. (1983). Lysosomes revisited. Eur J Biochem 137, 391397.Google Scholar
Egger, A.E., Rappel, C., Jakupec, M.A., Hartinger, C.G., Heffeter, P. & Keppler, B.K. (2009). Development of an experimental protocol for uptake studies of metal compounds in adherent tumor cells. J Anal At Spectrom 24, 5161.Google Scholar
Galanski, M., Arion, V.B., Jakupec, M.A. & Keppler, B.K. (2003). Recent developments in the field of tumor-inhibiting metal complexes. Curr Pharm Des 9, 20782089.Google Scholar
Galanski, M. & Keppler, B.K. (2007). Searching for the magic bullet: Anticancer platinum drugs which can be accumulated or activated in the tumor tissue. Anticancer Agents Med Chem 7, 5573.Google Scholar
Gallander, S.R. & Leonard, R.T. (1982). Effect of vanadate, molybdate and azide on membrane-associated ATPase and soluble phosphatase activities of corn roots. Plant Physiol 70, 13351340.Google Scholar
Gama, S., Mendes, F., Esteves, T., Marques, F., Matos, A., Rino, J., Coimbra, J., Ravera, M., Gabano, E., Santos, I. & Paulo, A. (2012). Synthesis and biological studies of pyrazolyl-diamine Pt(II) complexes containing polyaromatic DNA-binding groups. Chembiochem 13, 23522362.Google Scholar
Garcia, M.H., Morais, T.S., Florindo, P., Piedade, M.F.M., Moreno, V., Ciudad, C. & Noe, V. (2009). Inhibition of cancer cell growth by ruthenium (II) cyclopentadienyl derivative complexes with heteroaromatic ligands. J Inorg Biochem 103, 354361.CrossRefGoogle Scholar
Groessl, M., Reisner, E., Hartinger, C.G., Eichinger, R., Semenova, O., Timerbaev, A.R., Jakupec, M.A., Arion, V.B. & Keppler, B.K. (2007). Structure-activity relationships for NAMI-A-type complexes (HL)[trans-RuCl4L(S-dmso)ruthenate(III)] (L = imidazole, indazole, 1,2,4-triazole, 4-amino-1,2,4-triazole, and 1-methyl-1,2,4-triazole): aquation, redox properties, protein binding, and antiproliferative activity. J Med Chem 50, 21852193.CrossRefGoogle Scholar
Hartinger, C.G., Jakupec, M.A., Zorbas-Seifried, S., Groessl, M., Egger, A., Berger, W., Zorbas, H., Dyson, P.J. & Keppler, B.K. (2008). KP1019, a new redox-active anticancer agent-preclinical development and results of a clinical phase I study in tumor patients. Chem Biodivers 5, 21402155.Google Scholar
Kelland, L. (2007). The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 7, 573584.Google Scholar
Levina, A., Mitra, A. & Lay, P.A. (2009). Recent developments in ruthenium anticancer drugs. Metallomics 1, 458470.CrossRefGoogle ScholarPubMed
Logan, R., Funk, R.S., Axcell, E. & Krise, J.P. (2012). Drug-drug interactions involving lysosomes: mechanisms and potential clinical implications. Expert Opin Drug MetabToxicol 8, 943958.Google Scholar
Marceau, F., Bawolak, M.T., Lodge, R., Bouthillier, J., Gagné-Henley, A., Gaudreault, R.C. & Morissette, G. (2012). Cation trapping by cellular acidic compartments: Beyond the concept of lysosomotropic drugs. Toxicol App Pharmacol 259, 112.CrossRefGoogle ScholarPubMed
Morais, T.S., Santos, F., Côrte-Real, L., Marques, F., Robalo, M.P., Madeira, P.J.A. & Garcia, M.H. (2013). Biological activity and cellular uptake of [Ru(η5-C5 H5)(PPh3)(Me2 bpy)][CF3 SO3] complex. J Inorg Biochem 122, 817.CrossRefGoogle Scholar
Morais, T.S., Silva, T.J., Marques, F., Robalo, M.P., Avecilla, F., Amorim, M.P.J., Mendes, P.J., Santos, I. & Garcia, M.H. (2012). Synthesis of organometallic ruthenium(II) complexes with strong activity against several human cancer cell lines. J Inorg Biochem 114, 6574.Google Scholar
Moreno, V., Lorenzo, J., Aviles, F.X., Garcia, M.H., Ribeiro, J.P., Morais, T.S., Florindo, P. & Robalo, M.P. (2010). Studies of the antiproliferative activity of ruthenium (II) cyclopentadienyl-derived complexes with nitrogen coordinated ligands. Bioinorg Chem Appl 2010, 936834, doi:10.1155/2010/936834. Google Scholar
Ndolo, R.A., Jacobs, D.T., Forrest, M.L. & Krise, J.P. (2010). Intracellular distribution-based anticancer drug targeting: exploiting a lysosomal acidification defect associated with cancer cells. Mol Cell Pharmacol 2, 131136.Google ScholarPubMed
Olmos, E. & Hellin, E. (1997). Cytochemical localization of ATPase plasma membrane and acid phosphatase by cerium-based method in a salt-adapted cell line of Pisumsativum. J Exp Bot 48, 15291535.Google Scholar
Pessoa, J.C. & Tomaz, I. (2010). Transport of therapeutic vanadium and ruthenium complexes by blood plasma components. Curr Med Chem 17, 37013738.Google Scholar
Puckett, C.A., Ernst, R.J. & Barton, J.K. (2010). Exploring the cellular accumulation of metal complexes. Dalton Trans 39, 11591170.CrossRefGoogle ScholarPubMed
Record, R.D. & Griffing, L.R. (1988). Convergence of the endocytic and lysosomal pathways in soybean protoplasts. Planta 176, 425432.Google Scholar
Romero-Canelón, I., Pizarro, A.M., Habtemariam, A. & Sadler, P.J. (2012). Contrasting cellular uptake pathways for chlorido and iodidoiminopyridine ruthenium arene anticancer complexes. Metallomics 4, 12711279.CrossRefGoogle ScholarPubMed
Spinner, D.M. (2001). MTT growth assays in ovarian cancer. Methods Mol Med 39, 175177.Google Scholar
Tarragó-Trani, M.T. & Storrie, B. (2007). Alternate routes for drug delivery to the cell interior: Pathways to the Golgi apparatus and endoplasmic reticulum. Adv Drug Deliv Rev 59, 782797.CrossRefGoogle Scholar
Timerbaev, A.R., Hartinger, C.G., Aleksenko, S.S. & Keppler, B.K. (2006). Interactions of antitumor metallodrugs with serum proteins: Advances in characterization using modern analytical methodology. Chem Rev 106, 22242248.CrossRefGoogle ScholarPubMed
Tomaz, A.I., Jakusch, T., Morais, T.S., Marques, F., de Almeida, R.F., Mendes, F., Enyedy, E.A., Santos, I., Pessoa, J.C., Kiss, T. & Garcia, M.H. (2012a). [RuII(η5-C5H5)(bipy)(PPh3)]+, a promising large spectrum antitumor agent: Cytotoxic activity and interaction with human serum albumin. J Inorg Biochem 117, 261269.Google Scholar
Tomaz, A.I., Jakusch, T., Morais, T.S., Marques, F., De Almeida, R.F., Mendes, F., Enyedy, E.A., Santos, I., Pessoa, J.C., Kiss, T. & Garcia, M.H. (2012b). Patent application PT105890/PPI-46249, 2011. Google Scholar
Wlodkowic, D., Skommer, J., McGuinness, D., Hillier, C. & Darzynkiewicz, Z.L. (2009). ER-golgi network—A future target for anti-cancer therapy. Leuk Res 33, 14401447.CrossRefGoogle ScholarPubMed
World Health Organization (2013). Cancer Fact Sheet No. 297. Available at: http://www.who.int/mediacentre/factsheets/fs297/en//index.html (accessed October 20, 2012).Google Scholar
Yang, T.T., Sinai, P. & Kain, S.R. (1996). An acid phosphatase assay for quantifying the growth of adherent and nonadherent cells. Anal Biochem 241, 103108.Google Scholar
Zhao, G. & Lin, H. (2005). Metal complexes with aromatic N-containing ligands as potential agents in cancer treatment. Curr Med Chem Anticancer Agents 5, 137147.CrossRefGoogle ScholarPubMed