Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-29T11:36:49.857Z Has data issue: false hasContentIssue false

Cathodoluminescence Microscopy and Spectroscopy of Micro- and Nanodiamonds: An Implication for Laboratory Astrophysics

Published online by Cambridge University Press:  05 December 2012

Arnold Gucsik*
Affiliation:
Division of Earth and Planetary Sciences, Graduate School of Science, Kyoto University, Kitashirakawaoiwake-cho, Sakyu-ku, Kyoto-shi 606-8502, Japan Max Planck Institute for Chemistry, Hahn-Meitner Weg 1, D-55128 Mainz, Germany
Hirotsugu Nishido
Affiliation:
Department of Biosphere-Geosphere System Science, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005, Japan
Kiyotaka Ninagawa
Affiliation:
Department of Applied Physics, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005, Japan
Ulrich Ott
Affiliation:
Max Planck Institute for Chemistry, Hahn-Meitner Weg 1, D-55128 Mainz, Germany University of West Hungary, Savaria Campus, H-9700 Szombathely, Hungary
Akira Tsuchiyama
Affiliation:
Division of Earth and Planetary Sciences, Graduate School of Science, Kyoto University, Kitashirakawaoiwake-cho, Sakyu-ku, Kyoto-shi 606-8502, Japan
Masahiro Kayama
Affiliation:
Department of Earth and Planetary Systems Science, Graduate School of Science, Hiroshima University, Kagami-yama 1-3-1, Higashi-Hiroshima, Hiroshima 739-8526, Japan
Irakli Simonia
Affiliation:
College of Engineering of Ilia State University, Cholokashvili Ave 3/5, Tbilisi 0162, Georgia
Jean-Paul Boudou
Affiliation:
Laboratoire Aimé Cotton, Bat 505 Campus, d'Orsay, 91405, Orsay, Cedex, France
*
*Corresponding author. E-mail: ciklamensopron@yahoo.com, gucsik@mailmax.hu
Get access

Abstract

Color centers in selected micro- and nanodiamond samples were investigated by cathodoluminescence (CL) microscopy and spectroscopy at 298 K [room temperature (RT)] and 77 K [liquid-nitrogen temperature (LNT)] to assess the value of the technique for astrophysics. Nanodiamonds from meteorites were compared with synthetic diamonds made with different processes involving distinct synthesis mechanisms (chemical vapor deposition, static high pressure high temperature, detonation). A CL emission peak centered at around 540 nm at 77 K was observed in almost all of the selected diamond samples and is assigned to the dislocation defect with nitrogen atoms. Additional peaks were identified at 387 and 452 nm, which are related to the vacancy defect. In general, peak intensity at LNT at the samples was increased in comparison to RT. The results indicate a clear temperature—dependence of the spectroscopic properties of diamond. This suggests the method is a useful tool in laboratory astrophysics.

Type
Special Section: Cathodoluminescence
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baranov, P.G., Il'in, I.V., Soltamova, A.A., Vul', A.Y., Kidalov, S.V., Shakhov, F.M., Mamin, G.V., Orlinski, S.B. & Solakhov, M.Kh. (2009). Electron spin resonance detection and identification of nitrogen center sin nanodiamonds. JETP Lett 89, 409413.Google Scholar
Baranov, P.G., Soltamova, A.A., Tolmachev, D.O., Romanov, N.G., Babants, R.A., Shakhov, F.M., Kidalov, S.V., Vul', A.Y., Mamin, G.V., Orlinski, S.B. & Silkin, N.I. (2011). Enormously high concentrations of fluorescent nitrogen-vacancy centers fabricated by sintering of detonation nanodiamonds. Small 7, 15331537.Google Scholar
Casabianca, L.B., Shames, A.I., Panich, A.M., Shenderova, O. & Frydman, L. (2011). Factors affecting DNP NMR in polycrystalline diamond samples. J Phys Chem C 115, 1904119048.Google Scholar
Daulton, T.L., Eisenhour, D.D., Bernatowicz, T.J., Lewis, R.S. & Buseck, P.R. (1996). Genesis of presolar diamonds: Comparative high-resolution transmission electron microscopy study of meteoritic and terrestrial nano-diamonds. Geochim Cosmochim Acta 60, 48534872.Google Scholar
Davies, G. & Hamer, M.F. (1976). Optical studies of the 1.945 eV vibronic band in diamond. Proc R Soc Lond A 348, 285298.Google Scholar
De Sa, E.S. & Davies, G. (1977). Uniaxial stress studies of the 2.498 eV (H4), 2.417 eV and 2.536 eV vibronic bands in diamond. Proc R Soc Lond A 357, 231251.Google Scholar
Duley, W.W. (1985). Evidence for hydrogenated amorphous carbon in the red rectangle. Mon Not Roy Astron Soc 215, 259263.Google Scholar
Duley, W.W. (1988). Sharp emission lines from diamond dust in the red rectangle? Astrophys Space Sci 150, 387390.Google Scholar
Fisenko, A.V., Verchovsky, A.B., Semjonova, L.F., Ott, U., Wright, I.P. & Pillinger, C.T. (2002). A new isotopically normal heavy noble gas component in presolar diamonds from Boriskino revealed by grain size separation. XXXIIIrd Lunar Planet Sci Conf, Abstract #1647. Google Scholar
Grady, M.M. (2000). Catalogue of Meteorites, 5th ed. Cambridge, New York, Melbourne: Cambridge University Press.Google Scholar
Greiner, N.R., Phillips, D.S., Johnson, J.D. & Volk, F. (1988). Diamonds in detonation soot. Nature 333, 440442.Google Scholar
Grund, T. & Bischoff, A. (1999). Cathodoluminescence properties of diamonds in ureilites: Further evidence for a shock-induced origin. Meteorit Planet Sci 34(Suppl.), A48.Google Scholar
Gucsik, A., Nishido, H., Nakazato, T. & Ninagawa, K. (2009). Cathodoluminescence characterization of nanodiamonds: An application to the meteoritic nanodiamonds. Conference on Micro-Raman Spectroscopy and Luminescence Studies in the Earth and Planetary Sciences, Mainz, Germany, LPI Contribution No. 1473, p. 44. Google Scholar
Heiderhoff, R., Cramer, R.M., Sergeev, O.V. & Balk, L.J. (2001). Near-field cathodoluminescence of nanoscopic diamond properties. Diamond Relat Mater 10, 16471651.Google Scholar
Iakoubovskii, K. & Adriaenssens, G.J. (2002). Optical characterization of natural Argyle diamonds. Diam Relat Mater 11, 125131.Google Scholar
Jorge, M.I.B., Pereira, M.E., Thomaz, M.F., Davies, G. & Collins, A.T. (1983). Decay times of luminescence from brown diamonds. Portugal Phys 14, 195210.Google Scholar
Kanda, H. & Jia, X. (2001). Change of luminescence character of Ib diamonds with HPHT treatment. Diamond Relat Mater 10, 16651669.Google Scholar
Kanda, H. & Watanabe, K. (2004). Change of cathodoluminescence spectra of natural diamond with HPHT treatment. Diamond Relat Mater 13, 904908.Google Scholar
Kanda, H., Watanabe, K., Koizumi, S. & Teraji, T. (2003). Characterization of phosphorous doped CVD diamond films by cathodoluminescence spectroscopy and topography. Diamond Relat Mater 12, 2025.Google Scholar
Karczemska, A.T. (2010). Diamonds in meteorites—Raman mapping and cathodoluminescence studies. J Achievements Mat Manuf Eng 43, 94107.Google Scholar
Katsumata, S. (1992). Cathodoluminescence from epitaxial diamond layer grown by plasma-assisted chemical vapor deposition on high-pressure synthetic diamond. Jpn J Appl Phys 31, 35943597.Google Scholar
Kawarada, H., Nishimura, K., Ito, T., Suzuki, J.-I., Mar, K.-S., Yokota, Y. & Hiraki, A. (1988). Blue and green cathodoluminescence of synthesized diamond films formed by plasma-assisted chemical vapour deposition. Jpn J Appl Eng 27, 683686.Google Scholar
Kopylova, M., Navon, O., Dubrovinsky, L. & Khachatryan, G. (2010). Carbonatitic mineralogy of natural diamond-forming fluids. Earth Planet Sci Lett 291, 126137.Google Scholar
Kumar, S., Rauthan, C.M.S., Srivatsa, K.M.K., Dixit, P.N. & Bhattacharyya, R. (2001). Realization of different carbon nanostructures by a microwave plasma enhanced chemical vapor deposition technique. Appl Surf Sci 182, 326332.Google Scholar
Li, A. & Greenberg, J.M. (1997). A unified model of interstellar dust. Astron Astrophys 323, 566584.Google Scholar
Lindblom, J., Hölsä, J., Papunen, H. & Häkkänen, H. (2005). Luminescence study of defects in synthetic as-grown and HPHT diamonds compared to natural diamonds. Am Mineral 90, 428440.Google Scholar
Mathis, J.S., Rumpl, W. & Nordsieck, K.H. (1977). The size distribution of interstellar grains. Astrophys J 217, 425433.Google Scholar
Mohammed, K., Davies, G. & Collins, A.T. (1982). Uniaxial stress splitting of photoluminescence transitions at optical centres in cubic crystals: Theory and application to diamond. J Phys C 15, 2779. Google Scholar
Orlanducci, S., Tamburri, E., Terranova, M.L. & Rossi, M. (2008). Nanodiamond-coated carbon nanotubes: Early stage of the CVD growth process. Chem Vap Depos 14, 241246.Google Scholar
Ott, U. (2003). The most primitive material in meteorites. Astromineralogy. Lect Notes Phys 609, 236265.Google Scholar
Ott, U. (2009). Nanodiamonds in meteorites: Properties and astrophysical context. J Achiev Mat Manuf Eng 37, 779784.Google Scholar
Pratesi, G., Lo Giudice, A., Vishnevsky, S., Manfredotti, C. & Cipriani, C. (2003). Cathodoluminescence investigations on the Popigai, Ries, and Lappajärvi diamonds. Am Mineral 88, 17781787.Google Scholar
Robins, L.H., Cook, L.P., Farabaugh, E.N. & Feldman, A. (1989). Cathodoluminescence of defects in diamond films and particles grown by hot-filament chemical-vapor deposition. Phys Rev B 39, 1336713377.Google Scholar
Shames, A.I., Osipov, V.Y., Von Bardeleben, H.J. & Vul', A.Y. (2012). Spin S=1 centers: A universal type of paramagnetic defects in nanodiamonds of dynamic synthesis. J Phys-Condens Mat 24, 225302. Google Scholar
Shiryaev, A.A., Fisenko, A.V., Vlasov, I.I., Semjonova, L.F., Nagel, P. & Schuppler, S. (2011). Spectroscopic study of impurities and associated defects in nanodiamonds from Efremovka (CV3) and Orgueil (CI) meteorites. Geochim Cosmochim Acta 75, 31553165.Google Scholar
Simonia, I.A. & Mikailov, Kh.M. (2006). Photoluminescence and cathodoluminescence by cosmic dust. Astr Rep 50, 960964.Google Scholar
Smith, T.L. & Witt, A.N. (2002). The photophysics of the carrier of extended red emission. Astrophys J 565, 304318.Google Scholar
Stevens-Kalceff, M.A., Prawer, S., Kalceff, W., Orwa, J.O., Peng, J.L., McCallum, J.C. & Jamieson, D.N. (2008). Cathodoluminescence microanalysis of diamond nanocrystals in fused silicon oxide. J Appl Phys 104, 113514-1–9.Google Scholar
Tizei, L.H.G. & Kociak, M. (2012). Spectrally and spatially resolved cathodoluminescence of nanodiamonds: Local variations of the NV0 emission properties. Nanotechnology 23, 175702. Google Scholar
Verchovsky, A.B., Fisenko, A.V., Semjonova, L.F., Wright, I.P. & Pillinger, C.T. (1999). Presolar diamonds from Efremovka & Boriskino: C, N and noble gas isotopes in grain size fractions and implications for the origin of diamonds. XXXth Lunar Planet Sci Conf, Abstract #1746. Google Scholar
Walker, J. (1979). Optical absorption and luminescence in diamond. Rep Prog Phys 42, 16051659.Google Scholar
Weingartner, J.C. & Draine, B.T. (2001). Dust grain-size distributions and extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud. Astrophys J 548, 296309.Google Scholar
Won, J.H., Hatta, A., Yagyu, H., Ito, T., Sasaki, T. & Hiraki, A. (1996). Dependence of cathodoluminescence on irradiation time in diamond. Phys Stat Sol A 154, 321326.Google Scholar
Yacobi, B.G., Badzian, A.R. & Badzian, T. (1991). Cathodoluminescence study of diamond films grown by microwave plasma assisted chemical vapor deposition. J Appl Phys 69, 16431647.Google Scholar
Zaitsev, A.M. (2001). Optical Properties of Diamond, p. 507. Berlin: Springer.Google Scholar