Skip to main content Accessibility help
×
Home

Carbon Diffusion from Methane into Walls of Carbon Nanotube through Structurally and Compositionally Modified Iron Catalyst

  • Michael J. Behr (a1), K. Andre Mkhoyan (a1) and Eray S. Aydil (a1)

Abstract

To understand diffusion processes occurring inside Fe catalysts during multiwall carbon nanotube (MWCNT) growth, catalysts were studied using atomic-resolution scanning transmission electron microscopy combined with electron energy-loss spectroscopy. Nanotube walls emanate from structurally modified and chemically complex catalysts that consist of cementite and a 5 nm amorphous FeOx cap separated by a 2–3 nm thick carbon-rich region that also contains Fe and O (a-C:FexOy). Nonuniform distribution of carbon atoms throughout the catalyst base reveals that carbon molecules from the gas phase decompose near the catalyst multisection junction, where the MWCNT walls terminate. Formation of the a-C:FexOy region provides the essential carbon source for MWCNT growth. Two different carbon diffusion mechanisms are responsible for the growth of the inner and outer walls of each MWCNT.

Copyright

Corresponding author

Corresponding author. E-mail: mkhoyan@umn.edu
Corresponding author. E-mail: aydil@umn.edu

References

Hide All
Barone, P.W., Baik, S., Heller, D.A. & Strano, M.S. (2005). Near-infrared optical sensors based on single-walled carbon nanotubes. Nat Mater 4, 8692.
Batson, P.E. (1993a). Simultaneous STEM imaging and electron energy-loss spectroscopy with atomic-column sensitivity. Nature 366, 727728.
Batson, P.E. (1993b). Carbon 1s near-edge-absorption fine structure in graphite. Phys Rev B 48, 26082610.
Baughman, R.H., Zakhidov, A.A. & de Heer, W.A. (2002). Carbon nanotubes—The route toward applications. Science 297, 787792.
Begtrup, G.E., Gannett, W., Meyer, J.C., Yuzvinsky, T.D., Ertekin, E., Grossman, J.C. & Zettl, A. (2009). Facets of nanotube synthesis: High-resolution transmission electron microscopy study and density functional theory calculations. Phys Rev B 79, 205409.
Behr, M.J., Gaulding, E.A., Mkhoyan, K.A. & Aydil, E.S. (2010a). Effects of hydrogen on catalyst nanoparticles in carbon nanotube growth. J Appl Phys 108, 053303.
Behr, M.J., Mkhoyan, K.A. & Aydil, E.S. (2010b). Orientation and morphological evolution of catalyst nanoparticles during carbon nanotube growth. ACS Nano 4, 50875094.
Behr, M.J., Mkhoyan, K.A. & Aydil, E.S. (2010c). Catalyst rotation, twisting, and bending during multiwall carbon nanotube growth. Carbon 48, 38403845.
Blank, V.D., Kulnitskiy, B.A., Batov, D.V., Bangert, U., Gutiérrez-Sosa, A. & Harvey, A.J. (2002). Electron microscopy and electron energy loss spectroscopy studies of carbon fiber formation at Fe catalysts. J Appl Phys 91, 16571660.
Bosman, M., Keast, V.J., García-Muñoz, J.L., D'Alfonso, A.J., Findlay, S.D. & Allen, L.J. (2007). Two-dimensional mapping of chemical information at atomic resolution. Phys Rev Lett 99, 086102.
Carlson, L.J., Maccagnano, S.E., Zheng, M., Silcox, J. & Krauss, T.D. (2007). Fluorescence efficiency of individual carbon nanotubes. Nano Lett 7, 36983703.
Dresselhaus, M.S., Dresselhaus, G., Charlier, J.C. & Hernandez, E. (2004). Electronic, thermal and mechanical properties of carbon nanotubes. Phil Trans R Soc Lond 362, 20652098.
Egerton, R. (1996). Electron Energy Loss Spectroscopy in the Electron Microscope. New York: Plenum.
Enache, D.I., Edwards, J.K., Landon, P., Solsona-Espriu, B., Carley, A.F., Herzing, A.A., Watanabe, M., Kiely, C.J., Knight, D.W. & Hutchings, G.J. (2006). Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts. Science 311, 362365
Golberg, D., Mitome, M., Muller, C., Tang, C.C., Leonhardt, A. & Bando, Y. (2006). Atomic structures of iron-based single-crystalline nanowires crystallized inside multi-walled carbon nanotubes as revealed by analytical electron microscopy. Acta Mater 54, 25672576.
Grabke, H.J. (2003). Metal dusting. Mater Corros 54, 736740.
Helveg, S., López-Cartes, C., Sehested, J., Hansen, P.L., Clausen, B.S., Rostrup-Nielsen, J.R., Abild-Pedersen, F. & Nørskov, J.K. (2004). Atomic-scale imaging of carbon nanofibre growth. Nature 427, 426429.
Hofmann, S., Csanyi, G., Ferrari, A.C., Payne, M.C. & Robertson, J. (2005). Surface diffusion: The low activation energy path for nanotube growth. Phys Rev Lett 95, 036101.
Huang, J.Y. (1999). HRTEM and EELS studies of defects structure and amorphous-like graphite induced by ball milling. Acta Mater 47, 18011808.
Jin, Y.M., Xu, H.F. & Datye, A.K. (2006). Electron energy loss spectroscopy (EELS) of iron Fischer-Tropsch catalysts. Microsc Microanal 12, 124134.
Kim, H. & Sigmund, W. (2005). Iron particles in carbon nanotubes. Carbon 43, 17431748.
Melechko, A.V., Merkulov, V.I., McKnight, T.E., Guillorn, M.A., Klein, K.L., Lowndes, D.H. & Simpson, M.L. (2005). Vertically aligned carbon nanofibers and related structures: Controlled synthesis and directed assembly. J Appl Phys 97, 041301.
Meyyappan, M. (2009). A review of plasma enhanced chemical vapour deposition of carbon nanotubes. J Phys D Appl Phys 42, 213001.
Mkhoyan, K.A., Kirkland, E.J., Silcox, J. & Alldredge, E.S. (2004). Atomic-level characterization of GaN/AlN quantum wells. J Appl Phys 96, 738741.
Raty, J.Y., Gygi, F. & Galli, G. (2005). Growth of carbon nanotubes on metal nanoparticles: A microscopic mechanism from ab initio molecular dynamics simulations. Phys Rev Lett 95, 096103.
Ren, Z.F., Huang, Z.P., Xu, J.W., Wang, J.H., Bush, P., Siegal, M.P. & Provencio, P.N. (1998). Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282, 11051107.
Rodríguez-Manzo, J.A., Terrones, M., Terrones, H., Kroto, H.W., Sun, L. & Banhart, F. (2007). In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles. Nat Nanotechnol 2, 307311.
Schaper, A.K., Hou, H.Q., Greiner, A. & Phillipp, F. (2004). The role of iron carbide in multiwalled carbon nanotube growth. J Catal 222, 250254.
Sharma, R., Moore, E., Rez, P. & Treacy, M.M.J. (2009). Site-specific fabrication of Fe particles for carbon nanotube growth. Nano Lett 9, 689694.
Tans, S.J., Verschueren, A.R.M. & Dekker, C. (1998). Room-temperature transistor based on a single carbon nanotube. Nature 393, 4952.
Wirth, C.T., Zhang, C., Zhong, G.F., Hofmann, S. & Robertson, J. (2009). Diffusion- and reaction-limited growth of carbon nanotube forests. ACS Nano 3, 35603566.
Xu, C.H., Fu, C.L. & Pedraza, D.F. (1993). Simulations of point-defect properties in graphite by a tight-binding-force model. Phys Rev B 48, 1327313279.
Yao, Y., Falk, L.K.L., Morjan, R.E., Nerushev, O.A. & Campbell, E.E.B. (2004a). Synthesis of carbon nanotube films by thermal CVD in the presence of supported catalyst particles. Part I: The silicon substrate/nanotube film interface. J Mater Sci Mater Electron 15, 533543.
Yao, Y., Falk, L.K.L., Morjan, R.E., Nerushev, O.A. & Campbell, E.E.B. (2004b). Synthesis of carbon nanotube films by thermal CVD in the presence of supported catalyst particles. Part II: The silicon substrate/nanotube film interface. J Mater Sci Mater Electron 15, 583594.
Yoshida, H., Takeda, S., Uchiyama, T., Kohno, H. & Homma, Y. (2008). Atomic-scale in-situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. Nano Lett 8, 20822086.

Keywords

Carbon Diffusion from Methane into Walls of Carbon Nanotube through Structurally and Compositionally Modified Iron Catalyst

  • Michael J. Behr (a1), K. Andre Mkhoyan (a1) and Eray S. Aydil (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed