Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-17T21:32:33.815Z Has data issue: false hasContentIssue false

Beam-Induced Motion of Adatoms in the Transmission Electron Microscope

Published online by Cambridge University Press:  21 February 2013

R.F. Egerton*
Affiliation:
Physics Department, University of Alberta, Edmonton T6G 2E1, Canada
*
*Corresponding author. E-mail: regerton@ualberta.ca
Get access

Abstract

Equations governing the elastic scattering of electrons are applied to the knock-on displacement of atoms along a substrate, yielding analytical expressions for the surface-translation energy, threshold incident energy, and displacement rate. For a surface perpendicular to the incident beam, scattering angles around 90° contribute most to the kinetic energy of surface atoms. Tilting the specimen lowers the threshold incident energy for displacement and leads to anisotropy in the atomic motion but has little effect on the directionally-averaged displacement rate. The rate of beam-induced adatom motion is predicted to exceed that of room-temperature thermal motion when the surface-diffusion energy is greater than about 0.5 eV.

Type
Software, Techniques, and Equipment Development
Copyright
Copyright © Microscopy Society of America 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Banhart, F. (1999). Irradiation effects in carbon nanostructures. Rep Prog Phys 62, 11811221.Google Scholar
Batson, P.E. (2008). Motion of gold atoms on carbon in the aberratiuon-corrected STEM. Microsc Microanal 4, 8997.Google Scholar
Bradley, C.R. (1988). Calculations of atomic sputtering and displacement cross-sections in solid elements by electrons with energies from threshold to 1.5 MV. ANL-88-48 report. Argonne, IL: Argonne National Laboratory. Google Scholar
Crozier, P.A. (2011). Nanocharacterization of heterogeneous catalysts by ex situ and in situ STEM. In Scanning Transmission Electron Microscopy, Pennycook, S.J. & Nellist, P.D. (Eds.). New York: Springer Science+Business Media.Google Scholar
Dai, X-Q., Tang, Y-N., Dai, Y-W., Li, Y-H., Zhao, J-H., Zhao, B. & Yang, Z-X. (2011). Structures of Pt clusters on graphene doped with nitrogen, boron, and silicon: A theoretical study. Chin Phys B 20, 056801-1–7.CrossRefGoogle Scholar
Egerton, R.F. (1975). Inelastic scattering of 80 keV electrons in amorphous carbon. Philos Mag 31, 199215.CrossRefGoogle Scholar
Egerton, R.F., McLeod, R., Wang, F. & Malac, M. (2010). Basic questions related to electron-induced sputtering in the TEM. Ultramicroscopy 110, 991997.CrossRefGoogle Scholar
Gan, Y., Sun, L. & Banhart, F. (2008). One- and two-dimensional diffusion of metal atoms in graphene. Small 4, 587591.CrossRefGoogle ScholarPubMed
Graham, W.R. & Ehrlich, G. (1975). Surface self-diffusion of single atoms. Thin Solid Films 25, 8596.CrossRefGoogle Scholar
Groves, M.N., Maladier-Jugroot, C. & Jugroot, M. (2012). Improving platinum catalyst durability with a doped graphene support. J Phys Chem C 116, 1054810556.Google Scholar
Halicioglu, T. & Pound, G.M. (1979). A calculation of the diffusion energies for adatoms on surfaces of F.C.C. metals. Thin Solid Films 57, 241245.CrossRefGoogle Scholar
Isaacson, M.S., Johnson, D. & Crewe, A.V. (1973). Electron beam excitation and damage of biological molecules; its implications for specimen damage in electron microscopy. Radiat Res 55, 205224.Google Scholar
Isaacson, M.S., Kopf, D., Utlaut, M., Parker, N.W. & Crewe, A.V. (1977). Direct observations of atomic diffusion by scanning transmission electron microscopy. Proc Natl Acad Sci USA 74, 18021806.Google Scholar
Isaacson, M.S., Langmore, J., Parker, N.W., Kopf, D. & Utlaut, M. (1976). The study of the adsorption and diffusion of heavy atoms on light element substrates by means of the atomic resolution STEM. Ultramicroscopy 1, 359376.Google Scholar
Ishii, A., Yamamoto, M., Asano, H. & Fujiwara, K. (2008). DFT calculation for adatom adsorption on graphene sheet as a prototype of carbon nanotube functionalization. J Phys Conf Ser 100, 052087-1–4.Google Scholar
Kong, K., Choi, Y., Ryu, B-H., Lee, J-O. & Chang, H. (2012). Investigation of metal/carbon-related materials for fuel cell applications by electronic structure calculations. Mater Sci Eng C 26, 12071210.Google Scholar
Krivanek, O.L., Chisholm, M.F., Murfitt, M.F. & Dellby, N. (2012). Scanning transmission electron microscopy: Albert Crewe's vision and beyond. Ultramicroscopy 123, 9098.Google Scholar
Krivanek, O.L., Corbin, G.J., Dellby, N., Elston, B.F., Keyse, R.J., Murfitt, M.F., Own, C.S., Szilagyi, Z.S. & Woodruff, J.W. (2008). An electron microscope for the aberration-corrected era. Ultramicroscopy 108, 179195.Google Scholar
Krivanek, O.L., Dellby, N., Murfitt, M.F, Chisholm, M.F., Pennycook, T.J., Suenaga, K. & Nicolosi, V. (2010). Gentle STEM: ADF imaging and EELS at low primary energies. Ultramicroscopy 110, 935944.Google Scholar
Marks, L.D. (1994). Experimental studies of small particle structures. Rep Prog Phys 57, 603649.Google Scholar
Nellist, P.D. & Pennycook, S.J. (1996). Direct imaging of the atomic configuration of ultradispersed catalysts. Science 274(5286), 413415.Google Scholar
Oen, O.S. (1973). Cross sections for atomic displacements in solids by fast electrons. ORNL-4897 report. Oak Ridge, TN: Oak Ridge National Laboratory. Google Scholar
Ramsier, R.D. & Yates, J.T. (1991). Electron-stimulated desorption: Principles and applications. Surf Sci Rep 12, 243378.Google Scholar
Reimer, L. (1998). Scanning Electron Microscopy, 2nd ed., p. 68. Heidelberg, Germany: Springer.CrossRefGoogle Scholar
Reimer, L. & Kohl, H. (2007). Transmission Electron Microscopy, 5th ed., p. 144. Heidelberg, Germany: Springer.Google Scholar
Robertson, A.W., Allen, C.S., Wu, Y.A., He, K., Olivier, J., Neethling, J., Kirkland, A.I. & Warner, J.H. (2012). Spatial control of defect creation in graphene at the nanoscale. Nat Commun 3, 1144. CrossRefGoogle ScholarPubMed
Sharma, R. (2012). Experimental set up for in situ transmission electron microscopy observations of chemical processes. Micron 43(11), 11471155.CrossRefGoogle ScholarPubMed
Venables, J.A. (2000). Introduction to Surface and Thin Film Processes. Cambridge, U.K.: Cambridge University Press.Google Scholar
Wall, J. (1979). Biological scanning transmission electron microscopy. In Introduction to Analytical Electron Microscopy, Hren, J.J., Goldstein, J.I. & Joy, D.C. (Eds.), pp. 333342. New York: Plenum.Google Scholar