Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T08:19:12.890Z Has data issue: false hasContentIssue false

Atom Probe Analysis of III–V and Si-Based Semiconductor Photovoltaic Structures

Published online by Cambridge University Press:  14 November 2007

Brian P. Gorman
Affiliation:
Department of Materials Science and Engineering, University of North Texas, Denton, TX 76203, USA
Andrew G. Norman
Affiliation:
Measurements and Characterization Division, National Renewable Energy Laboratory, Golden, CO 80401, USA
Yanfa Yan
Affiliation:
Measurements and Characterization Division, National Renewable Energy Laboratory, Golden, CO 80401, USA
Get access

Abstract

The applicability of atom probe to the characterization of photovoltaic devices is presented with special emphasis on high efficiency III–V and low cost ITO/a-Si:H heterojunction cells. Laser pulsed atom probe is shown to enable subnanometer chemical and structural depth profiling of interfaces in III–V heterojunction cells. Hydrogen, oxygen, and phosphorus chemical profiling in 5-nm-thick a-Si heterojunction cells is also illustrated, along with compositional analysis of the ITO/a-Si interface. Detection limits of atom probe tomography useful to semiconductor devices are also discussed. Gaining information about interfacial abruptness, roughness, and dopant profiles will allow for the determination of semiconductor conductivity, junction depletion widths, and ultimately photocurrent collection efficiencies and fill factors.

Type
Research Article
Copyright
© 2007 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barri, K., Jayabal, M., Zhao, H., Morel, D.L., Asher, S., Pankow, J.W., Young, M.R. & Ferekides, C.S. (2005). Introduction of Cu in CdS and its effect on CdTe solar cells. In Conference Record of the 31st IEEE Photovoltaic Specialists Conference-2005, January 3–7, 2005, Lake Buena Vista, Florida, pp. 287290. Piscataway, NJ: Institute of Electrical and Electronics Engineers.CrossRef
Benninghoven, A., Evans, C.A., McKeegan, K.D., Storms, H.A. & Werner, H.W. (1990). Secondary Ion Mass Spectrometry. New York: John Wiley.
Bhattacharya, P. (1997). Semiconductor Optoelectronic Devices, 2nd ed. New York: Prentice-Hall.
Bhattacharya, R.N., Contreras, M.A. & Teeter, G. (2004). 18.5% copper indium gallium diselenide (CIGS) device using single-layer, chemical-bath-deposited ZnS(O,OH). Jap J Appl Phys 43, L1475L1476.Google Scholar
Boeing Spectrolab. Boeing Spectrolab terrestrial solar cell surpasses 40 percent efficiency. Available at: http://www.spectrolab.com/com/news/news-detail.asp?id=172 (accessed Dec. 2006).
Cerezo, A., Grovenor, C.R.M. & Smith, G.D.W. (1986). Pulsed laser atom probe analysis of semiconductor materials. J Microsc 141, 155170.CrossRefGoogle Scholar
Ellingson, R.J., Beard, M.C., Johnson, J.C., Yu, P.R., Micic, O.I., Nozik, A.J., Shabaev, A. & Efros, A.L. (2005). Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett 5, 865871.CrossRefGoogle Scholar
Gault, B., Vurpillot, F., Vella, A., Gilbert, M., Menand, A., Blavette, D. & Deconihout, B. (2006). Design of a femtosecond laser assisted tomographic atom probe. Rev Sci Instrum 77, 043705.CrossRefGoogle Scholar
Grovenor, C.R.M., Cerezo, A., Liddle, J.A. & Smith, G.D.W. (1987). Pulsed laser atom probe analysis of semiconductor materials. In Microscopy of Semiconducting Materials, Proceedings of the Institute of Physics Conference, Cullis, A.G. & Augustus, P.D. (Eds.), p. 665. New York: American Institute of Physics.
Hashizume, T., Hasegawa, Y., Kobayashi, A. & Sakurai, T. (1986). Atom probe investigations of III–V semiconductors: Comparisons of voltage and laser pulsed modes. Rev Sci Instrum 57, 13781380.CrossRefGoogle Scholar
Hoummada, K., Cadel, E., Mangelinck, D., Perrin-Pellegrino, C., Blavette, D. & Deconihout, B. (2006). First stages of the formation of Ni silicide by atom probe tomography. Appl Phys Lett 89, 181905.CrossRefGoogle Scholar
Kellogg, G.L. & Tsong, T.T. (1980). Pulsed laser atom probe field ion microscope. J Appl Phys 51, 1184.Google Scholar
Kelly, T.F., Camus, P.P., Larson, D.J., Holzman, L.M. & Bajikar, S.S. (1996). On the many advantages of local electrode atom probes. Ultramicroscopy 62, 29.CrossRefGoogle Scholar
Kelly, T.F., Gribb, T.T. & Martens, R.L. (2001). Local electrode atom probes: Prospects for 3-D atomic scale metrology applications in the semiconductor and data storage industries. In Characterization and Metrology for ULSI Technology 2000, Gaithersburg, MD, AIP Conference Proceedings no. 550, Seiler, D.G., Diebold, A.C., Shaffner, T.J., McDonald, R., Bullis, W.M., Smith, P.J., & Secula, E.M. (Eds.), pp. 620629. New York: American Institute of Physics.CrossRef
Kelly, T.F., Gribb, T.T., Olson, J.D., Martens, R.L., Shepard, J.D., Wiener, S.A., Kunicki, T.C., Ulfig, R.M., Lenz, D.R., Strennen, E.M., Oltman, E., Bunton, J.H. & Strait, D.R. (2004). First data from a commercial local electrode atom probe (LEAP). Microsc Microanal 10, 373383.CrossRefGoogle Scholar
Kelly, T.F., Larson, D.J., Thompson, K., Alvis, R., Bunton, J., Olson, J. & Gorman, B.P. (2007). Atom probe tomography of electronic materials. Ann Rev Mat Res 37, 681727.CrossRefGoogle Scholar
Larson, D.J., Foord, D.T. & Petford-Long, A.K. (1998). Field ion specimen preparation using focused ion beams. Ultramicroscopy 75, 147159.CrossRefGoogle Scholar
Lewis, N.S., Ed. (2003). Basic Research Needs for Solar Energy Utilization. Report on DOE-BES Workshop on Solar Energy Utilization. Available at: http://www.er.doe.gov/bes/reports/files/SEU_rpt.pdf.
Liddle, J.A., Norman, A., Cerezo, A. & Grovenor, C.R.M. (1988). Pulsed laser atom probe analysis of ternary and quaternary III–V epitaxial layers. J de Phys Colloq 49-C6, 509514.CrossRefGoogle Scholar
Luque, A. & Martí, A. (1997). Increasing the efficiency of ideal solar cells by photon inducted transitions at intermediate levels. Phys Rev Lett 78, 50145017.CrossRefGoogle Scholar
Mackenzie, R.A.D., Liddle, J.A. & Grovenor, C.R.M. (1991). Ultrahigh resolution characterization of compound semiconductors using pulsed laser atom probe techniques. Appl Surf Sci 50, 196201.CrossRefGoogle Scholar
Miller, M.K. (2000). Atom Probe Tomography: Analysis at the Atomic Level. New York: Kluwer Academic.CrossRef
Miller, M.K. (2005). Sculpting needle-shaped atom probe specimens with a dual beam FIB. Microsc Microanal 11(suppl. 2), 808.CrossRefGoogle Scholar
Miller, M.K. & Kenik, E.A. (2004). Atom probe tomography: A technique for nanoscale characterization. Microsc Microanal 10, 336341.CrossRefGoogle Scholar
Miller, M.K., Russell, K.F. & Thompson, G.B. (2005). Strategies for fabricating atom probe specimens with a dual beam FIB. Ultramicroscopy 102, 287298.CrossRefGoogle Scholar
Nastasi, M., Mayer, J. & Hirvonen, J.K. (1996). Ion-Solid Interactions: Fundamentals and Applications. New York: Cambridge University Press.CrossRef
Norman, A.G., Hanna, M.C., Dippo, P., Levi, D., Reedy, R., Ward, S. & Al-Jassim, M.M. (2005). InGaAs/GaAs quantum dot superlattices: MOVPE growth, structural, and optical characterization, and application in intermediate-band solar cells. In Proceedings of the IEEE 31st Photovoltaic Specialist Conference, Lake Buena Vista, FL, January 2005, pp. 4348. Piscataway, NJ: Institute of Electrical and Electronics Engineers.CrossRef
O'Keefe, M.A. & Shao-Horn, Y. (2004). Sub-angstrom atomic resolution imaging from heavy atoms to light atoms. Microsc Microanal 10, 8695.CrossRefGoogle Scholar
Schaller, R.D. & Klimov, V.I. (2004). High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion. Phys Rev Lett 92, 186601.CrossRefGoogle Scholar
Thompson, K., Booske, J.H., Larson, D.J. & Kelly, T.F. (2005). 3-D atom mapping of dopants in Si nanostructures. Appl Phys Lett 87, 1.CrossRefGoogle Scholar
Thompson, K., Larson, D.J. & Ulfig, R.M. (2006). Analyzing Si-based structures in 3-D using a laser pulsed local electrode atom probe. Solid State Technol 49, 65.Google Scholar
Thompson, K., Lawrence, D., Larson, D.J., Olson, J.D., Kelly, T.F. & Gorman, B.P. (2007a). In-situ site specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131139.Google Scholar
Thompson, K., Sebastian, J. & Gerstl, S. (2007b). Observations of Si field evaporation. Ultramicroscopy 107, 124130.Google Scholar
Wang, T.H., Page, M.R., Iwaniczko, E., Wang, Q., Xu, Y., Yan, Y., Roybal, L., Levi, D., Bauer, R., Branz, H.M., Yelundur, V. & Rohatgi, A. (2005). 17.5% p-type silicon heterojunction solar cells with HWCVD a-Si:H as the emitter and back contact. Report No. CP-520-38942. Golden, CO: National Renewable Energy Laboratory.
Williams, D.B. & Carter, C.B. (1996). Transmission Electron Microscopy. New York: Plenum Press.CrossRef
Yan, Y., Page, M., Wang, T.H., Al-Jassim, M.M., Branz, H.M. & Wang, Q. (2006). Atomic structure and electronic properties of c-Si/a-Si:H heterointerfaces. Appl Phys Lett 88, 121925.CrossRefGoogle Scholar