Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-07-26T05:51:16.877Z Has data issue: false hasContentIssue false

Atom Probe Analysis of a Zr-based Bulk Metallic Glass

Published online by Cambridge University Press:  01 October 2021

Huma Bilal
Affiliation:
Australian Centre for Microscopy & Microanalysis, School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
Keita Nomoto
Affiliation:
Australian Centre for Microscopy & Microanalysis, School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
Bernd Gludovatz
Affiliation:
School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
Jamie J. Kruzic
Affiliation:
School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
Anna V. Ceguerra
Affiliation:
Australian Centre for Microscopy & Microanalysis, School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
Simon P. Ringer*
Affiliation:
Australian Centre for Microscopy & Microanalysis, School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
*
*Corresponding author: Simon P. Ringer, E-mail: simon.ringer@sydney.edu.au
Get access

Abstract

Zr-based bulk metallic glasses (BMGs) are amorphous alloys that can exhibit excellent mechanical properties, including high yield strength and fracture toughness. These properties are linked to local microstructural heterogeneities. Whether via microscopy-based techniques, synchrotron techniques, or calorimetric approaches, the amorphous structure of BMGs makes the characterisation of the details of these local structural and chemical heterogeneities extremely challenging. Our focus here is on atom probe tomography (APT), where considerable uncertainty remains in terms of how and when to apply this otherwise powerful technique to amorphous materials. This work reports a systematic evaluation of the experimental parameter space. We report results of BMG composition acquired against various APT operating parameters for Zr63.96Cu13.36Ni10.29Al11.04Nb1.25 (at. %). We demonstrate that a customised peak-based ranging approach yields satisfactory compositional accuracy with absolute errors of <1 at. %. Beyond composition, we have discussed the data quality in terms of attributes of the mass spectra: mass resolution, signal-to-thermal tail ratio, and overlapped peak ratio. We also assess the composition of the well-known clustered evaporation effects, common in APT data of BMGs. We conclude that these regions have negligible differences in composition from the surrounding “matrix” or bulk in these alloys.

Type
Applications in Alloys
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The primary institution of research was The University of Sydney, Australia.

References

Ashby, MF & Greer, AL (2006). Metallic glasses as structural materials. Scr Mater 54(3), 321326.CrossRefGoogle Scholar
Cheng, YQ & Ma, E (2011). Atomic-level structure and structure–property relationship in metallic glasses. Prog Mater Sci 56(4), 379473.CrossRefGoogle Scholar
Dhara, S, Marceau, R, Wood, K, Dorin, T, Timokhina, I & Hodgson, P (2018). Atom probe tomography data analysis procedure for precipitate and cluster identification in a Ti-Mo steel. Data Br 18, 968982.CrossRefGoogle Scholar
Dong, Y, Etienne, A, Frolov, A, Fedotova, S, Fujii, K, Fukuya, K, Hatzoglou, C, Kuleshova, E, Lindgren, K & London, A (2019). Atomprobe tomography interlaboratory study on clustering analysis in experimentaldata using the maximum separation distance approach. Microsc Microanal 25(2), 356366.CrossRefGoogle Scholar
Evenson, Z, Naleway, S, Wei, S, Gross, O, Kruzic, J, Gallino, I, Possart, W, Stommel, M & Busch, R (2014). β relaxation and low-temperature aging in a Au-based bulk metallic glass: From elastic properties to atomic-scale structure. Phys Rev B 89(17), 174204.CrossRefGoogle Scholar
Fujita, T, Konno, K, Zhang, W, Kumar, V, Matsuura, M, Inoue, A, Sakurai, T & Chen, M (2009). Atomic-scale heterogeneity of a multicomponent bulk metallic glass with excellent glass forming ability. Phys Rev Lett 103(7), 075502.CrossRefGoogle ScholarPubMed
Gault, B, Moody, MP, Cairney, JM & Ringer, SP (2012). Atom Probe Microscopy. New York: Springer Science & Business Media.CrossRefGoogle Scholar
Ghaemi, M, Tavakoli, R & Foroughi, A (2018). Comparing short–range and medium–range ordering in CuZr and NiZr metallic glasses–correlation between structure and glass form ability. J Non-Cryst Solids 499, 227236.CrossRefGoogle Scholar
Greer, AL (1995). Metallic glasses. Science 267(5206), 19471953.CrossRefGoogle ScholarPubMed
Haley, D, Petersen, T, Barton, G & Ringer, SP (2009). Influence of field evaporation on radial distribution functions in atom probe tomography. Philos Mag 89(11), 925943.CrossRefGoogle Scholar
Han, JH, Mattern, N, Vainio, U, Shariq, A, Sohn, SW, Kim, DH & Eckert, J (2014). Phase separation in Zr56-xGdxCo28Al16 metallic glasses (0 ⩽ x ⩽ 20). Acta Mater 66, 262272.CrossRefGoogle Scholar
Hirotsu, Y, Nieh, TG, Hirata, A, Ohkubo, T & Tanaka, N (2006). Local atomic ordering and nanoscale phase separation ina Pd-Ni-P bulk metallic glass. Phys Rev B 73(1), 012205.CrossRefGoogle Scholar
Houard, J, Vella, A, Vurpillot, F & Deconihout, B (2010). Optical near-field absorption at a metal tip far from plasmonic resonance. Phys Rev B 81(12), 125411.CrossRefGoogle Scholar
Hudson, D, Smith, G & Gault, B (2011). Optimisation of mass ranging for atom probe microanalysis and application to the corrosion processes in Zr alloys. Ultramicroscopy 111(6), 480486.CrossRefGoogle Scholar
Inoue, A & Takeuchi, A (2002). High strength bulk amorphous alloys. Mater Trans JIM 43(8), 18921906.CrossRefGoogle Scholar
Kelly, TF, Vella, A, Bunton, JH, Houard, J, Silaeva, EP, Bogdanowicz, J & Vandervorst, W (2014). Laser pulsing of field evaporation in atom probe tomography. Curr Opin Solid State Mater Sci 18(2), 8189.CrossRefGoogle Scholar
Khan, MM, Nemati, A, Rahman, ZU, Shah, UH, Asgar, H & Haider, W (2018). Recent advancements in bulk metallic glasses and their applications: A review. Crit Rev Solid State Mater Sci 43(3), 233268.CrossRefGoogle Scholar
Kirchhofer, R, Teague, MC & Gorman, BP (2013). Thermal effects on mass and spatial resolution during laser pulse atom probe tomography of cerium oxide. J Nucl Mater 436(1–3), 2328.CrossRefGoogle Scholar
Kruzic, JJ (2016). Bulk metallic glasses as structural materials: A review. Adv Eng Mater 18(8), 13081331.CrossRefGoogle Scholar
Kühbach, M, London, AJ, Wang, J, Schreiber, DK, Mendez-Martin, F, Ghamarian, I, Bilal, H & Ceguerra, AV (2021). Community-driven methods for open and reproducible software tools for analyzing datasets from atom probe microscopy. Microsc Microanal, 116. doi:10.1017/S1431927621012241.Google ScholarPubMed
La Fontaine, A, Gault, B, Breen, A, Stephenson, L, Ceguerra, AV, Yang, L, Nguyen, TD, Zhang, J, Young, DJ & Cairney, JM (2015). Interpreting atom probe data from chromium oxide scales. Ultramicroscopy 159, 354359.CrossRefGoogle ScholarPubMed
Larson, DJ, Prosa, T, Ulfig, RM, Geiser, BP & Kelly, TF (2013). Local Electrode Atom Probe Tomography. New York, NY, USA: Springer Science, vol. 2.CrossRefGoogle Scholar
Lee, M, Lee, K, Das, J, Thomas, J, Kühn, U & Eckert, J (2010). Improved plasticity of bulk metallic glasses upon cold rolling. Scr Mater 62(9), 678681.CrossRefGoogle Scholar
Lefebvre, W, Vurpillot, F & Sauvage, X (2016). Atom Probe Tomography: Put Theory into Practice. Cambridge, MA: Academic Press.Google Scholar
Li, B, Xie, S & Kruzic, JJ (2019). Toughness enhancement and heterogeneous softening of a cryogenically cycled Zr–Cu–Ni–Al–Nb bulk metallic glass. Acta Mater 176, 278288.CrossRefGoogle Scholar
London, AJ (2019). Quantifying uncertainty from mass-peak overlaps in atom probe microscopy. Microsc Microanal 25(2), 378388.CrossRefGoogle ScholarPubMed
Ma, D, Stoica, A, Wang, X-L, Lu, Z, Clausen, B & Brown, D (2012). Elastic moduli inheritance and the weakest link in bulk metallic glasses. Phys Rev Lett 108(8), 085501.CrossRefGoogle ScholarPubMed
Mattern, N, Vainio, U, Park, JM, Han, JH, Shariq, A, Kim, DH & Eckert, J (2011). Phase separation in Cu46Zr47-xAl7Gdx metallic glasses. J Alloys Compd 509, 2326.CrossRefGoogle Scholar
Miller, MK & Forbes, RG (2014). Atom-Probe Tomography: The Local Electrode Atom Probe. Boston, MA: Springer, US.Google Scholar
Miller, MK, Liu, CT, Wright, JA, Tang, W & Hildal, K (2006). APT characterization of some iron-based bulk metallic glasses. Intermetallics 14(8-9), 10191026.CrossRefGoogle Scholar
Miller, MK & Russell, KF (2007). Atom probe specimen preparation with a dual beam SEM/FIB miller. Ultramicroscopy 107(9), 761766.CrossRefGoogle ScholarPubMed
Nomoto, K, Ceguerra, AV, Gammer, C, Li, B, Bilal, H, Hohenwarter, A, Gludovatz, B, Eckert, J, Ringer, SP & Kruzic, JJ (2021). Medium-range order dictates local hardness in bulk metallic glasses. Mater Today 44, 4857.CrossRefGoogle Scholar
Park, J, Kim, DH & Eckert, J (2012). Internal state modulation-mediated plasticity enhancement in monolithic Ti-based bulk metallic glass. Intermetallics 29, 7074.CrossRefGoogle Scholar
Pedrazzini, S, London, AJ, Gault, B, Saxey, D, Speller, S, Grovenor, CR, Danaie, M, Moody, MP, Edmondson, PD & Bagot, PA (2017). Nanoscale stoichiometric analysis of a high-temperature superconductor by atom probe tomography. Microsc Microanal 23(2), 414424.CrossRefGoogle ScholarPubMed
Peng, Z, Choi, P-P, Gault, B & Raabe, D (2017). Evaluation of analysis conditions for laser-pulsed atom probe tomography: Example of cemented tungsten carbide. Microsc Microanal 23(2), 431.CrossRefGoogle ScholarPubMed
Plummer, J (2015). Is metallic glass poised to come of age? Nat Mater 14(6), 553555.CrossRefGoogle Scholar
Qu, D, Liss, K-D, Sun, Y, Reid, M, Almer, J, Yan, K, Wang, Y, Liao, X & Shen, J (2013). Structural origins for the high plasticity of a Zr–Cu–Ni–Al bulk metallic glass. Acta Mater 61(1), 321330.CrossRefGoogle Scholar
Sarker, S, Isheim, D, King, G, An, Q, Chandra, D, Morozov, S, Page, K, Wermer, J, Seidman, DN & Dolan, M (2018). Icosahedraclustering and short range order in Ni-Nb-Zr amorphous membranes. Sci Rep 8(1), 114.CrossRefGoogle ScholarPubMed
Shariq, A & Mattern, N (2011). A study of phase separated Ni66Nb17Y17 metallic glass using atom probe tomography. Ultramicroscopy 111(8), 13701374.CrossRefGoogle ScholarPubMed
Stepień, ZM & Tsong, TT (1998). Formation of metal hydride ions in low-temperature field evaporation. Surf Sci 409(1), 5768.CrossRefGoogle Scholar
Stolpe, M, Kruzic, J & Busch, R (2014). Evolution of shear bands, free volume and hardness during cold rolling of a Zr-based bulk metallic glass. Acta Mater 64, 231240.CrossRefGoogle Scholar
Takahashi, J, Kawakami, K & Raabe, D (2017). Comparison of the quantitative analysis performance between pulsed voltage atom probe and pulsed laser atom probe. Ultramicroscopy 175, 105110.CrossRefGoogle ScholarPubMed
Tang, F, Gault, B, Ringer, SP & Cairney, JM (2010). Optimization of pulsed laser atom probe (PLAP) for the analysis of nanocomposite Ti–Si–N films. Ultramicroscopy 110(7), 836843.CrossRefGoogle ScholarPubMed
Thompson, K, Gorman, B, Larson, D, Van Leer, B & Hong, L (2006). Minimization of Ga induced FIB damage using low energy clean-up. Microsc Microanal 12(S02), 17361737.CrossRefGoogle Scholar
Vallery, R, Liu, M, Gidley, D, Launey, M & Kruzic, J (2007). Characterization of fatigue-induced free volume changes in a bulk metallic glass using positron annihilation spectroscopy. Appl Phys Lett 91(26), 261908.CrossRefGoogle Scholar
Van Steenberge, N (2009). Study of Structural Changes of Zr-Based Bulk Metallic Glasses upon Annealing and Deformation Treatments. Barcelona, Spain: Universitat Autònoma de Barcelona.Google Scholar
Van Steenberge, N, Concustell, A, Sort, J, Das, J, Mattern, N, Gebert, A, Suriñach, S, Eckert, J & Baró, M (2008). Microstructural inhomogeneities introduced in a Zr-based bulk metallic glass upon low-temperature annealing. Mater Sci Eng A 491(1–2), 124130.CrossRefGoogle Scholar
Vurpillot, F, Houard, J, Vella, A & Deconihout, B (2009). Thermal response of a field emitter subjected to ultra-fast laser illumination. J Phys D Appl Phys 42(12), 125502.CrossRefGoogle Scholar
Wu, N, Yan, M, Zuo, L & Wang, J (2014). Correlation between medium-range order structure and glass-forming ability for Al-based metallic glasses. J Appl Phys 115(4), 043523.CrossRefGoogle Scholar
Xu, Y, Yu, M, Xu, R, Wang, X, Wang, Z, Liang, Y & Lin, J (2016). Short-to-medium-range order and atomic packing in Zr48Cu36Ag8Al8 bulk metallic glass. Metals 6(10), 240.CrossRefGoogle Scholar
Yuan, C, Lv, Z, Pang, C, Wu, X, Lan, S, Lu, C, Wang, L, Yu, H, Luan, J & Zhu, W (2019). Atomic-scale heterogeneity inlarge-plasticity Cu-doped metallic glasses. J Alloys Compd 798, 517522.CrossRefGoogle Scholar
Zemp, J, Gerstl, SSA, Loffler, JF & Schönfeld, B (2016). Clustered field evaporation of metallic glasses in atom probe tomography. Ultramicroscopy 162, 3541.CrossRefGoogle ScholarPubMed
Zhang, Y, Warren, PJ & Cerezo, A (2002). Effect of Cu addition on nanocrystallisation of Al-Ni-Sm amorphous alloy. In 47 th International Field Emission Symposium, vol. 327, no. 1, pp. 109–115.CrossRefGoogle Scholar