Skip to main content Accessibility help
×
Home

Architecture of the Subendothelial Elastic Fibers of Small Blood Vessels and Variations in Vascular Type and Size

  • Akira Shinaoka (a1), Ryusuke Momota (a1), Eri Shiratsuchi (a2), Mitsuko Kosaka (a1), Kanae Kumagishi (a1), Ryuichi Nakahara (a3), Ichiro Naito (a1) and Aiji Ohtsuka (a1)...

Abstract

Most blood vessels contain elastin that provides the vessels with the resilience and flexibility necessary to control hemodynamics. Pathophysiological hemodynamic changes affect the remodeling of elastic components, but little is known about their structural properties. The present study was designed to elucidate, in detail, the three-dimensional (3D) architecture of delicate elastic fibers in small vessels, and to reveal their architectural pattern in a rat model. The fine vascular elastic components were observed by a newly developed scanning electron microscopy technique using a formic acid digestion with vascular casts. This method successfully visualized the 3D architecture of elastic fibers in small blood vessels, even arterioles and venules. The subendothelial elastic fibers in such small vessels assemble into a sheet of meshwork running longitudinally, while larger vessels have a higher density of mesh and thicker mesh fibers. The quantitative analysis revealed that arterioles had a wider range of mesh density than venules; the ratio of density to vessel size was higher than that in venules. The new method was useful for evaluating the subendothelial elastic fibers of small vessels and for demonstrating differences in the architecture of different types of vessels.

Copyright

Corresponding author

* Corresponding author. E-mail: aiji@okayama-u.ac.jp

References

Hide All
Anidjar, S., Salzmann, J.L., Gentric, D., Lagneau, P., Camilleri, J.P. & Michel, J.B. (1990). Elastase-induced experimental aneurysms in rats. Circulation 82, 973981.
Basu, P., Sen, U., Tyagi, N. & Tyagi, S.C. (2010). Blood flow interplays with elastin: collagen and MMP: TIMP ratios to maintain healthy vascular structure and function. Vasc Health Risk Manag 6, 215228.
Brooke, B.S., Bayes-Genis, A. & Li, D.Y. (2003a). New insights into elastin and vascular disease. Trends Cardiovasc Med 13, 176181.
Brooke, B.S., Karnik, S.K. & Li, D.Y. (2003b). Extracellular matrix in vascular morphogenesis and disease: Structure versus signal. Trends Cell Biol 13, 5156.
Carta, L., Wagenseil, J.E., Knutsen, R.H., Mariko, B., Faury, G., Davis, E.C., Starcher, B., Mecham, R.P. & Ramirez, F. (2009). Discrete contributions of elastic fiber components to arterial development and mechanical compliance. Arterioscler Thromb Vasc Biol 29, 20832089.
Curran, M.E., Atkinson, D.L., Ewart, A.K., Morris, C.A., Leppert, M.F. & Keating, M.T. (1993). The elastin gene is disrupted by a translocation associated with supravalvular aortic stenosis. Cell 73, 159168.
Daamen, W.F., Hafmans, T., Veerkamp, J.H. & van Kuppevelt, T.H. (2005). Isolation of intact elastin fibers devoid of microfibrils. Tissue Eng 11, 11681176.
Dridi, S.M., Foucault, B.A., Igondjo, T.S., Senni, K., Ejeil, A.L., Pellat, B., Lyonnet, S., Bonnet, D., Charpiot, P. & Godeau, G. (2005). Vascular wall remodeling in patients with supravalvular aortic stenosis and Williams Beuren syndrome. J Vasc Res 42, 190201.
Farand, P., Garon, A. & Plante, G.E. (2007). Structure of large arteries: Orientation of elastin in rabbit aortic internal elastic lamina and in the elastic lamellae of aortic media. Microvasc Res 73, 9599.
Faury, G., Pezet, M., Knutsen, R.H., Boyle, W.A., Heximer, S.P., McLean, S.E., Minkes, R.K., Blumer, K.J., Kovacs, A., Kelly, D.P., Li, D.Y., Starcher, B. & Mecham, R.P. (2003). Developmental adaptation of the mouse cardiovascular system to elastin haploinsufficiency. J Clin Invest 112, 14191428.
Fowler, N.O. (1971). Law of Laplace. N Engl J Med 285, 10871088.
Hirai, M., Ohbayashi, T., Horiguchi, M., Okawa, K., Hagiwara, A., Chien, K.R., Kita, T. & Nakamura, T. (2007). Fibulin-5/DANCE has an elastogenic organizer activity that is abrogated by proteolytic cleavage in vivo . J Cell Biol 26, 10611071.
Jondeau, G., Michel, J.B. & Boileau, C. (2011). The translational science of Marfan syndrome. Heart 97, 12061214.
Karnik, S.K., Brooke, B.S., Bayes-Genis, A., Sorensen, L., Wythe, J.D., Schwartz, R.S., Keating, M.T. & Li, D.Y. (2003). A critical role for elastin signaling in vascular morphogenesis and disease. Development 130, 411423.
Kielty, C.M. (2006). Elastic fibres in health and disease. Expert Rev Mol Med 8, 123.
Kielty, C.M., Sherratt, M.J. & Shuttleworth, C.A. (2002). Elastic fibres. J Cell Sci 115, 28172828.
Mecham, R.P. (2008). Methods in elastic tissue biology: Elastin isolation and purification. Methods 45, 3241.
Mochizuki, S., Brassart, B. & Hinek, A. (2002). Signaling pathways transduced through the elastin receptor facilitate proliferation of arterial smooth muscle cells. J Biol Chem 277, 4485444863.
Muiznieks, L.D., Weiss, A.S. & Keeley, F.W. (2010). Structural disorder and dynamics of elastin. Biochem Cell Biol 88, 239250.
Murakami, T. (1973). A metal impregnation method of biological specimens for scanning electron microscopy. Arch Histol Jap 35, 323326.
Rasmussen, B.L., Bruenger, E. & Sandberg, L.B. (1975). A new method for purification of mature elastin. Anal Biochem 64, 255259.
Sato, F., Shimada, T., Kitamura, H., Campbell, G.R. & Ogata, J. (1994). Changes in morphology of elastin fibers during development of the tunica intima of monkey aorta. Heart Vessels 9, 140147.
Seyama, Y., Hayashi, M., Usami, E., Tsuchida, H., Tokudome, S. & Yamashita, S. (1990). Basic study on non-delipidemic fractionation of aortic connective tissue of human and experimental atherosclerosis. Jpn J Cli Chem 19, 8793.
Shifren, A., Durmowicz, A.G., Knutsen, R.H., Faury, G. & Mecham, R.P. (2008). Elastin insufficiency predisposes to elevated pulmonary circulatory pressures through changes in elastic artery structure. J Appl Physiol 105, 16101619.
Shiratsuchi, E., Ura, M., Nakaba, M., Maeda, I. & Okamoto, K. (2010). Elastin peptides prepared from piscine and mammalian elastic tissues inhibit collagen-induced platelet aggregation and stimulate migration and proliferation of human skin fibroblasts. J Pept Sci 16, 652658.
Ushiki, T. (1992). Preserving the original architecture of elastin components in the formic acid-digested aorta by an alternative procedure for scanning electron microscopy. J Electron Microsc (Tokyo) 41, 6063.
Ushiki, T. & Murakumo, M. (1991). Scanning electron microscopic studies of tissue elastin components exposed by a KOH-collagenase or simple KOH digestion method. Arch Histol Cytol 54, 427436.
Wachi, H. (2011). Role of elastic fibers on cardiovascular disease. J Health Sci 57, 449457.
Wagenseil, J.E., Ciliberto, C.H., Knutsen, R.H., Levy, M.A., Kovacs, A. & Mecham, R.P. (2010). The importance of elastin to aortic development in mice. Am J Physiol Heart Circ Physiol 299, 257264.
Wagenseil, J.E., Knutsen, R.H., Li, D.Y. & Mecham, R.P. (2007). Elastin-insufficient mice show normal cardiovascular remodeling in 2K1C hypertension despite higher baseline pressure and unique cardiovascular architecture. Am J Physiol Heart Circ Physiol 293, 574582.
Wagenseil, J.E. & Mecham, R.P. (2009). Vascular extracellular matrix and arterial mechanics. Physiol Rev 89, 957989.
Weber, E., Rossi, A., Solito, R., Sacchi, G., Agliano, M. & Gerli, R. (2002). Focal adhesion molecules expression and fibrillin deposition by lymphatic and blood vessel endothelial cells in culture. Microvasc Res 64, 4755.
Wise, S.G. & Weiss, A.S. (2009). Tropoelastin. Int J Biochem Cell Biol 41, 494497.
Wolinsky, H. & Glagov, S. (1967). A lamellar unit of aortic medial structure and function in mammals. Circ Res 20, 99111.

Keywords

Architecture of the Subendothelial Elastic Fibers of Small Blood Vessels and Variations in Vascular Type and Size

  • Akira Shinaoka (a1), Ryusuke Momota (a1), Eri Shiratsuchi (a2), Mitsuko Kosaka (a1), Kanae Kumagishi (a1), Ryuichi Nakahara (a3), Ichiro Naito (a1) and Aiji Ohtsuka (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed